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What latent variable underlies confidence in lineup rejections? 

Anne S. Yilmaz , John T. Wixted *,1 
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A B S T R A C T   

When a face is positively identified from a multi-person photo lineup, it is presumably the face that generates the strongest memory signal. In addition, confidence in 
a positive identification is presumably determined by the strength of the memory signal associated with that face. However, when no face generates a strong enough 
memory signal to be identified, the entire set of faces in the lineup is collectively rejected. What latent variable underlies confidence in a lineup rejection? One 
possibility is that the face that generates the strongest memory signal still determines confidence (i.e., the weaker that memory signal is, the more confidently the 
lineup is rejected). Another possibility is that confidence in a lineup rejection is determined by the average strength of the memory signals generated by the faces in 
the lineup (i.e., the weaker that average memory signal is, the more confidently the lineup is rejected). The reliance on an average signal has been proposed as a 
possible explanation for why the confidence-accuracy for lineup rejections tends to be weak. Here, we modified two existing signal-detection-based lineup models 
(the Independent Observations model and the Ensemble model) and fit them to multiple lineup datasets to investigate which decision variable underlies confidence in 
lineup rejections. Both models agree that confidence in a lineup rejection is based on the strongest memory signal in the lineup, not on the average signal. These 
model fits also revealed for the first time that the memory signals in a lineup are correlated, as they theoretically should be.   

Introduction 

A theoretically interesting issue in the domain of recognition mem-
ory concerns the decision variable that participants use to decide whether 
an item was previously encountered. In a standard old/new recognition 
procedure, the decision variable is simply the memory signal generated 
by the singular item presented on a given test trial. The nature of this 
memory signal can be conceptualized in terms of recollection vs. fa-
miliarity, item vs. associative information, or verbatim vs. gist memo-
ry—but however it is conceptualized, the stronger that memory signal is, 
the more likely the test item is to be declared “old” and the higher the 
participant’s confidence will be. 

When more than one item is presented on a given test trial, other 
decision variables become possible. In a standard two-alternative 
forced-choice (2-AFC) procedure, for example, the item chosen on a 
given trial is presumably the one that generates the stronger memory 
signal. However, the participant’s confidence in that choice could be 
based either on the strength of the winning item’s memory signal 
considered in isolation (i.e., without regard for the strength of the losing 
item), or it could instead be based on the difference in memory strength 
associated with the two test items, in which case confidence would be 
higher the more the strength of the winning item exceeds that of the 
losing item. Ignoring the strength of the losing item is suboptimal in the 
sense that it leaves useful information on the table, but the results of a 

several recent studies have suggested that participants do just that (e.g., 
Hanczakowskia, Butowska, Beaman, Jones, Zawadzka, 2021; Jou, 
Flores, Cortes, & Leka, 2016; Miyoshi, Kuwahara, & Kawaguchi, 2018; 
Zawadzka, Higham, & Hanczakowski, 2017). 

Similar theoretical issues arise when more items are presented on a 
test trial, such as in the case of a police photo lineup. A typical photo 
lineup consists of six or more faces that are arranged in one of two 
possible configurations. A target-present lineup consists of one previously 
seen “old” face (i.e., the target) surrounded by five or more new “fillers” 
(i.e., lures) that are drawn from a pool of photos all of which are 
matched to the target on basic characteristics like race, gender, hair-
style, and approximate age. A target-absent lineup is similar except that 
the target is replaced by another filler to serve as the “innocent suspect.” 
An innocent suspect in an actual police lineup is special from the 
perspective of the police (being the only person in the lineup suspected 
of having committed the crime), but from the perspective of the witness, 
the innocent suspect is not special and is functionally just another filler 
(i.e., an innocent person who matches the other lineup members with 
respect to general physical characteristics). When presented with a 
lineup, participants can choose one of the faces as having been seen 
before or they can reject the lineup by indicating that the target is not 
present. 

As in 2-AFC, if a face is chosen from a lineup, it is presumably the one 
that generates the strongest (MAX) memory signal. However, once 
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again, confidence in a positive identification might be based solely on 
the absolute strength of the memory signal associated with the chosen 
face (without regard for the strength of the other faces in the lineup) or it 
might instead be based on a difference score. A signal detection model 
known as the Independent Observations model assumes that confidence 
in a positive identification from a lineup is based on its absolute memory 
signal (Wixted et al., 2018). An alternative signal detection model 
known as the Ensemble model assumes that confidence in a positive 
identification from a lineup is instead based on a difference score. Ac-
cording to this model, confidence in a positive ID is based on the MAX 
signal minus the mean memory strength signal across all faces in the 
lineup. In that case, confidence would be high not merely when the MAX 
signal is strong (as is true of the Independent Observations model) but 
only when its high strength stands out sufficiently from the “crowd” of 
memory signals in the lineup (Akan et al., 2021; Wixted et al., 2018). 

The research reported here does not address the absolute vs. relative 
issue for positive IDs but instead focuses on the largely unexplored de-
cision variable that underlies confidence for negative IDs (i.e., for lineup 
rejections). Critically, unlike in the case of positive IDs, no face is 
selected when a lineup is rejected. In that case, is confidence still 
determined by the memory signal associated with the unchosen MAX 
face (either its absolute memory strength or its memory strength relative 
to the other faces in the lineup)? Or is it instead based on a collective 
memory signal, such as the average (AVG) of the memory signal 
generated by all the faces in a lineup? 

It seems fair to say that the default view is that the confidence in 
lineup rejections is based on the MAX signal, just as is true of confidence 
in positive identifications (e.g., Akan et al., 2021). However, picking up 
on an idea suggested by Brewer and Wells (2006) and Lindsay et al. 
(2013), Yilmaz et al. (2022) hypothesized that confidence in lineup re-
jections might be determined by the average memory signal. The 
rationale for deviating from the default perspective was based on the 
empirical observation that the confidence-accuracy relationship for 
lineup rejections, unlike the confidence-accuracy for positive IDs, is 
often weak (e.g., Brewer & Wells, 2006) and is sometimes completely 
flat (e.g., Dodson & Dobolyi, 2016). One possible reason for that 
asymmetry is that a different decision variable is used for positive vs. 
negative IDs. It seems plausible that a different decision variable might 
be used because, for positive IDs, confidence is provided in relation to a 
single face (i.e., the MAX face), whereas for negative IDs (i.e., lineup 
rejections), confidence is provided to the set of rejected faces. Here, 
using a model-fitting approach, we investigate whether the MAX 
memory signal or the AVG memory signal underlies confidence in lineup 
rejections. 

The primary goal of our model-fitting approach is to rule out the least 
viable model, leaving the winning model as a viable candidate. As noted 
by Roberts and Pashler (2000), the mere fact that a model provides a 
better fit cannot be assumed to validate that model. However, Wixted 
et al. (2018) argued that a model that provides a qualitatively poor fit 
relative to other models can be reasonably rejected. For example, for the 
fits reported by Wixted et al. (2018), the Integration model (according to 
which the decision variable is based on the sum of the memory signals 
associated with the individual faces in the lineup) provided a far worse 
fit to the data than the Independent Observations and Ensemble models. 
On those grounds, the Integration model was ruled out as a viable 
candidate. Our goal here is to determine if, for lineup rejections, the 
assumption of a MAX decision variable similarly provides a qualitatively 
worse fit to the data than a model based on an AVG decision variable, 
perhaps helping to explain the weak confidence-accuracy relationship 
when the witness decides that the perpetrator is not in the lineup. 

To investigate this issue, we (1) modified both the Independent 
Observations model and the Ensemble model to use either a MAX de-
cision variable or an AVG decision variable to determine confidence in 
lineup rejections (yielding two versions of each model) and then (2) fit 
those models to empirical lineup data to determine which better char-
acterizes the results. According to the MAX version of each model, the 

weaker the (absolute or relative) signal associated with the MAX face is, 
the more confidently the lineup is rejected. According to the AVG 
version, the weaker the average signal associated with the set of faces in 
the lineup is, the more confidently the lineup is rejected. 

Because the Independent Observations and Ensemble models used in 
prior research already assume that the MAX face determines confidence 
for positive IDs, extending that assumption to confidence in negative IDs 
required only minor changes. By contrast, modifying the two models to 
allow for the possibility of an AVG decision variable for lineup rejections 
was more involved because it required modifying the likelihood func-
tions for positive IDs derived by Wixted et al. (2018). The next section 
describes how the Independent Observations model and the Ensemble 
model conceptualize confidence in positive IDs and then provides an 
overview of how their likelihood functions were modified to allow for 
the possibility that an AVG memory signal is used for confidence in 
lineup rejections (with the mathematical details presented in the 
Appendix). 

Signal detection models of lineup memory 

Basic assumptions 

Fig. 1 illustrates a standard signal detection representation of the 
memory signals generated by faces in target-present and target-absent 
lineups. In a target-present lineup (top panel of Fig. 1), the raw 
memory-match signal for the guilty suspect (i.e., the degree to which the 

Fig. 1. Memory-match signals in target-present (TP) and target-absent (TA) 
lineups. μTarget represents the mean of the guilty suspect distribution (the guilty 
suspect is the previously seen target). For the simplest case in which a single 
pool of fillers is used for all fillers and innocent suspects, the mean of the dis-
tribution of memory-match signals is μLure, which can be set to zero for con-
venience. In target-present lineups, d′TP is the difference between the mean of 
the guilty suspect (target) distribution and the lure distribution in standard 
deviation units. That is, d′TP =

μTarget − μLure
σ for the uncorrelated case. Similarly, for 

target-absent lineups, d′TA is the standardized difference between the innocent 
suspect distribution and the lure distribution. Because the innocent suspect is 
simply another face drawn from the pool of fillers, d′TA = 0. 
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face of the guilty suspect in the lineup matches the face of the perpe-
trator in memory) is drawn from a distribution with a relatively high 
mean, whereas the memory-match signals for the fillers are drawn from 
a distribution with a lower mean. By contrast, in a target-absent lineup, 
the innocent suspect is effectively just another filler. Thus, the memory- 
strength distributions for the innocent suspect and the TA fillers are one 
and the same (bottom panel of Fig. 1). 

The memory signals generated by the suspect and fillers in a lineup 
are likely to be positively correlated because the faces are not chosen 
randomly. Instead, to ensure a fair lineup, they are chosen because they 
share basic physical features of the perpetrator that are likely stored in 
the witness’s memory, such as race, gender, age, etc. (Wells et al., 1998, 
Wells et al., 2020). In actual police investigations, witnesses often 
describe these features to the police, and a longstanding recommenda-
tion is that photos should be included in the lineup only if they match the 
witness’s description of the perpetrator (Wells et al., 1993). The shared 
features are what give rise to correlated memory signals. For example, if 
an impoverished memory of the perpetrator was formed at the time the 
crime was witnessed, the shared features will not generate a strong 
memory-match signal, and this will be true of all the faces in the lineup. 
If a rich memory of the perpetrator was formed instead, the shared 
features will generate a strong memory-match signal, and, again, this 
will be true of all the faces in the lineup. Thus, the fact that features that 
are shared across faces in a lineup give rise to correlated memory signals 
is by design. This is an important issue that we return to later, but we set 
it aside for the moment to simplify the discussion of the likelihood 
functions for the competing models of interest here. 

The distributions of raw memory signals shown in Fig. 1 serve as the 
general foundation of any signal detection model of recognition memory 
tested using a standard lineup. Specific models are created by specifying 
how those memory signals are used to make recognition memory de-
cisions. The Independent Observations model and Ensemble model 
make different assumptions about how these memory signals are eval-
uated in relation to decision criteria to (1) make a decision about 
whether a face in the lineup is the previously seen perpetrator and (2) 
rate confidence when a face is identified. 

Modeling positive IDs 

The Independent Observations model assumes that positive IDs are 
based on the raw strength of the memory signals depicted in Fig. 1. Thus, 
according to this model, the overall decision criterion for making a 
positive ID and the additional criteria for rating confidence are super-
imposed on the distribution of raw memory-match signals shown in 
Fig. 1, as illustrated in Fig. 2. In Fig. 2, the upper and lower panels shown 
in Fig. 1 have been collapsed into a single panel because the distribution 
of memory signals for fillers in both target-present and target-absent 
lineups and for innocent suspects in target-absent lineups is the same 
(i.e., they are all faces drawn from the same pool of fillers). 

The Independent Observations model assumes that the decision is 
based on the face in the lineup that generates the strongest memory- 
match signal (the MAX face), regardless of the memory-strength sig-
nals generated by the other faces. In other words, the decision is inde-
pendent of the signals associated with those other faces. No face other 
than the MAX face has any bearing on the decision. If the memory signal 
of the MAX face in the lineup exceeds an overall decision criterion (c3), 
then that face will be identified regardless of whether the memory sig-
nals generated by other faces in the lineup also happen to exceed the 
decision criterion (Macmillan & Creelman, 2005; Wixted et al., 2018). 
The stronger the memory signal generated by the MAX face is (e.g., if it 
exceeds c4 or c5), the more confident the eyewitness will be when 
identifying that face. 

For notational purposes, let x be the set of memory signals generated 
by the faces in a given lineup. That is, x = {x1,x2,x3, ...xk}, where the xi 
are the memory signals generated by individual faces, with x1 repre-
senting the memory signal generated by the suspect in the lineup, and k 

is lineup size. For the Independent Observations model, the decision 
variable used to decide whether to make a positive ID, f(x), is the raw 
memory-match signal (xi) of the face that generates the MAX signal. 
That is, for the Independent Observations model, f(x) = max(x). 

The Ensemble model is much the same except that the raw memory 
signals depicted in Fig. 2 are all transformed by subtracting away the 
mean memory signal generated by the faces in the lineup. Conceptually, 
it is still a standard signal detection model like that depicted in Fig. 2, 
but the “memory match signal” is now conceptualized as the difference 
between the raw memory-match signal generated by a given face and 
the mean memory signal. This difference score will, on average, be 
greater for the guilty suspect in a target-present lineup than for fillers 
and innocent suspects. 

According to this model, a strong memory-match signal (far to the 
right) exists not just when the raw signal for the MAX face is strong but 
when the difference between that raw signal and the mean memory 
signal is large. As with the Independent Observations model, only the 
MAX face is a candidate for being identified, but the decision variable is 
now f(x) = max(x) − mean(x). Note that mean(x) represents the mean of 
all k faces in the lineup, including the MAX face. A reasonable alterna-
tive would be to subtract from max(x) the mean of the remaining k − 1 
faces in the lineup. This model turns out to be linearly related to the 
Ensemble model and is thus effectively the same model (Wixted et al., 
2018). 

If the max(x) − mean(x) value exceeds c3, a positive ID of the MAX 
face is made. Unlike the Independent Observations model, if max(x) is 
very strong in an absolute sense, a positive ID might not be made if the 
memory signals generated by all the faces in the lineup are also similarly 
strong. 

Modeling lineup rejections 

According to either model, if the decision variable falls below the 
overall criterion (c3), the lineup is rejected, and that is the situation of 
interest here. When the lineup is rejected, confidence might still be 
based solely on the memory signal associated with the (unchosen) MAX 
face, with confidence being higher the weaker that signal happens to be. 
That is, even though the MAX face is not explicitly chosen, confidence in 
the lineup rejection might still be based on f(x) = max(x) (Independent 

Fig. 2. This is the same model depicted in Fig. 1 except that the innocent 
suspect/filler distribution has been collapsed to a single distribution with a 
mean set to μLure. In addition, confidence criteria have been superimposed on 
the raw (untransformed) memory-match signals because there are the memory 
signals that the Independent Observations model assumes are used to compare 
the MAX face to the confidence criteria (c3 through c5). The overall decision 
criterion is c3. 
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Observations model) or f(x) = max(x) − mean(x) (Ensemble model), 
depending on which model is correct. 

Fitting the MAX versions of each model to lineup rejections required 
some modification to the programs that have been used in the past to fit 
positive IDs, but the changes were straightforward. They were 
straightforward because no modifications to the previously reported 
likelihood functions for the Independent Observations and Ensemble 
models (Wixted et al., 2018) were needed to specify the MAX versions of 
these models for lineup rejections. The only issue that needed to be 
addressed is that—given maximum likelihood parameter estimates—the 
predicted confidence ratings for lineup rejections in which confidence is 
based on the guilty suspect’s face (because it is the MAX face) or a filler’s 
face (because it is the MAX signal) are not separately tracked. For 
example, a dataset might have 100 high-confidence positive IDs to a 
guilty suspect’s face (i.e., the guilty suspect was the MAX face 100 times) 
and 25 high-confidence positive IDs to TP fillers (i.e., a TP filler was the 
MAX face 25 times), and it might also have 50 high-confidence lineup 
rejections. Unlike for high-confidence positive IDs, whether the MAX 
face was the guilty suspect or a TP filler is unknown for high-confidence 
lineup rejections. Because these two categories of lineup rejections 
cannot be disentangled in observed data, their corresponding predicted 
values (computed using the maximum likelihood parameter estimates) 
were aggregated together when fitting the models to the data. 

Instead of relying on the MAX face when the lineup is rejected, 
confidence might be based on the average face-memory signal, with 
confidence being higher the weaker the AVG signal is. For a given lineup 
that has been rejected, the mean of the lineup memory signals is 
conceptualized as a random variable drawn from a distribution of 
means. 

For the Independent Observations model, the mean decision variable 
for lineup rejections is computed when f(x) = max(x) falls below c3. 
Under those conditions, neither the mean nor the standard deviation of 
the distribution of means is independent of the lineup rejection decision 
outcome. As a result, the derivation of the relevant likelihood function is 
somewhat involved. 

For the Ensemble model, the mean decision variable is computed 
when f(x) = max(x) − mean(x) falls below c3, but this conditionality does 
not affect the mean and standard deviation of the relevant distribution of 
means. As a result, the derivation of the relevant likelihood function is 
much more straightforward. The Appendix provides the mathematical 
derivations of the likelihood functions corresponding to the AVG ver-
sions of the Independent Observations and Ensemble models. For those 
models, we assume that the decision variable switches from f(x), which 
differs for the Independent Observations and Ensemble models, to 
g(x) = mean(x), regardless of which model is used to predict confidence 
in positive IDs. 

Because both the Independent Observations and Ensemble models 
have both a MAX version and an AVG version for lineup rejections, there 
are four models in all. All four models include at least six parameter-
s—μTarget plus five confidence criteria—and three of the four models also 
include a parameter that captures the correlation between memory 
signals in the lineup (r). The mean and standard deviation of the lure 
distribution were defined to be 0 and 1, respectively, and an equal- 
variance model was assumed for simplicity. We fit all four models to 
five different lineup datasets, four from our lab and one from a different 
lab. The details of the fits are presented next, and the story turned out to 
be similar for each. Specifically, the fits of both models consistently 
support the idea that lineup rejections are based on the face that gen-
erates the MAX memory signal in the lineup, not on the AVG memory 
signal. 

Method 

The four models were fit to data from four different projects in our 
lab that focused on unrelated issues and sometimes included additional 
conditions that are not of interest here (e.g., a showup condition in 

which a single innocent or guilty suspect is presented). We refer to these 
datasets as Datasets A through D. As noted below, Datasets B and C have 
already been published, whereas Datasets A and D have not previously 
been reported. To test for generality, we also fit a dataset from a 
different lab (Brewer & Wells, 2006), and we refer to it as Dataset E. The 
Brewer and Wells paper is often cited in support of the claim that the 
confidence-accuracy relationship is weak for lineup rejections. 

The experimental task was methodologically the same in all cases 
except that different stimulus materials were used, and lineup size 
varied between six and nine faces. In the standard lineup condition of 
each experiment, participants first watched a short mock-crime video 
involving a single perpetrator, completed a brief distractor task, and 
then made a recognition decision from a six-person simultaneous photo 
lineup (Datasets A, B, and D), a nine-person simultaneous photo lineup 
(Dataset C), or an eight-person simultaneous photo lineup (Dataset E). 

In Datasets A through D, half the participants were randomly 
assigned to receive a target-present lineup, and the other half were 
randomly assigned to receive a target-absent lineup. In Dataset E, each 
participant watched two videos and was tested with a target-present 
lineup for one video and a target-absent lineup for the other. In all 
datasets, a target-present lineup consisted of a photo of the perpetrator 
from the mock-crime video plus five or more fillers, whereas a target- 
absent lineup consisted of six or more fillers. 

For each participant, the fillers for Datasets A though D were 
randomly drawn from a large pool of possible filler photos (the same 
fillers were used for all lineups in Dataset E). The photos in the pool were 
selected to match the basic physical characteristics of the perpetrator (e. 
g., clean-shaven white male with short brown hair, approximately 20 
years of age). Participants could select one face as being the perpetrator 
or reject the lineup by clicking the “Not Present” button. After their 
identification decision (e.g., identification or reject), the participant 
rated their confidence level (0 %-100 %). Each participant made only 
one or two recognition memory decisions (plus a confidence rating), so a 
relatively large number of participants was tested (via Amazon Turk for 
Datasets A through D and via undergraduate and community groups for 
Dataset E). 

Results 

Dataset A: These data were taken from the standard six-person 
simultaneous lineup condition of an experiment comparing that condi-
tion to two other conditions (a showup condition consisting of only one 
test face, and a rate-them-all condition in which a confidence rating was 
made to every face in a six-person lineup). For model-fitting purposes, 
the confidence ratings were collapsed into low (0–60), medium (70–89), 
and high (90–100) bins. This method of collapsing is common because 
doing so creates confidence bins with similar numbers of observations. 
In addition, having only three bins requires only three free parameters to 
estimate the confidence criteria, which helps control the overall number 
of free parameters that must be estimated for a given model fit. Table 1 
presents the raw frequency counts for the various lineup decisions made 
with low, medium, or high confidence. The number of participants 
tested with a target-present lineup (NTP) was 1271, and the number of 
participants tested with a target-absent lineup (NTA) was 1334, bringing 
the total N to 2605. For target-present lineups, the hit rate (number of 
suspect IDs divided by the number of target-present lineups) was .74, the 
filler ID rate (number of filler IDs divided by the number of target- 

Table 1 
Frequency counts for Dataset A.   

Target Present Target Absent 

Confidence Suspect Filler Reject Filler Reject 

Low 222 52 106 245 280 
Med 314 28 73 97 323 
High 409 16 51 56 333  
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present lineups) was .08, and the lineup rejection rate (number of lineup 
rejections divided by the number of target-present lineups) was .18. For 
target-absent lineups, the filler ID rate was .30, and the lineup rejection 
rate was .70. 

The four models (i.e., the MAX and AVG versions of the Independent 
Observations model and the MAX and AVG versions of the Ensemble 
model) were fit to the data shown in Table 1 using maximum likelihood 
estimation. Table 2 shows the estimated parameter values and the chi- 
square goodness-of-fit statistics. 

With regard to the Independent Observations model, both the MAX 
and AVG decision-variable versions had 7 free parameters, but the MAX 
version provided a somewhat better fit (χ2 = 31.03 vs. χ2 = 37.12). 
With regard to the Ensemble model, the MAX and AVG decision-variable 
versions provided nearly identical fits (χ2 = 52.51 vs. χ2 = 52.43). 
However, the AVG version had one additional free parameter (r) 
because the MAX version does not include a correlation parameter.2 

Moreover, setting r to 0 for the AVG version (reducing the number of 
free parameters for that version to 6) dramatically worsened the fit, 
χ2(1) = 92.88 − 52.43 = 40.45, p < .001. Thus, this parameter was 
essential, and given the close chi-square goodness-of-fit values for the 
two versions of the model, any penalty applied for the extra parameter in 
the AVG version would likely render the MAX version of the Ensemble 
model the winner. Indeed, both AIC and BIC for the MAX version 
(9006.74 and 9041.93, respectively) were lower than the corresponding 
value for the average version (9008.54 and 9049.60, respectively). 
Therefore, according to the Ensemble model as well, there is no reason 
to favor the average decision variable over the MAX decision variable for 
lineup rejections. 

Although the purpose of this investigation was not to distinguish 
between the Independence Observations model vs. the Ensemble model, 
it is worth noting that the Independence Observations model provided a 
noticeably better fit to this dataset. However, as noted earlier, Wixted 
et al. (2018) previously argued that goodness-of-fit may not be the best 
way to distinguish between these two models. First, the Ensemble-MAX 
model has one fewer free parameter than Independent Observations 
MAX model. Second, when simulated data are generated using param-
eters similar to what is often observed in real data, the Independent 
Observations model has a much easier time fitting data generated by the 
Ensemble model than vice versa (Shen et al., 2023; Wixted et al., 2018). 
In other words, the Independent Observations model is the more flexible 
of the two. Thus, the best way to differentiate between them is to test 
their a priori theoretical predictions (see Shen et al., 2023). Still, for the 
present results, the goodness-of-fit advantage for the Independent Ob-
servations model is larger than it usually is, so it seems fair to say that, if 
anything, the results favor it over the Ensemble model. 

Interestingly, for all of the models that included a correlation 
parameter (three of the four models), the fit was improved significantly 
by allowing its value to be positive. Of course, this is as it should be as 
faces in a lineup are, by design, included because they share a certain 
number of features (and are features that will match memory of the 
perpetrator). Even so, this is the first clear model-based evidence sup-
porting the existence of correlated memory signals in lineups. 

Dataset B: These data come from Experiment 1 of Yilmaz et al. 
(2022). That paper also reported an exact replication of Experiment 1, 
and we have combined the data from the original and exact replication 
experiments for model-fitting purposes. Table 3 presents the raw fre-
quency counts for the various lineup decisions made with low (0–60), 
medium (70–89), or high confidence (90–100). For this experiment, 
NTP = 631 and NTA = 567, bringing the total N to 1198. For target- 
present lineups, the hit rate was .76, the filler ID rate was .06, and the 
lineup rejection rate was .18. For target-absent lineups, the filler ID rate 
was .30, and the lineup rejection rate was .70. 

As before, the four models (two versions of the Independent Obser-
vations model and two versions of the Ensemble model) were fit to the 
data shown in Table 3 using maximum likelihood estimation. Table 4 
shows the estimated parameter values and the chi-square goodness-of-fit 
statistics. With regard to the Independent Observations model, the AVG 
and MAX decision-variable versions provided nearly identical fits 
(χ2 = 21.97 vs. χ2 = 21.29, respectively), with a very slight edge going 
to the MAX version. With regard to the Ensemble model, the average and 
MAX decision-variable versions also provided nearly identical fits 
(χ2 = 20.70 vs. χ2 = 21.64, respectively), but the AVG version had an 
extra free parameter (r). Setting its value to 0 once again dramatically 
worsened the fit, χ2(1) = 51.03 − 20.70 = 30.35, p < .001, so the in-
clusion of this free parameter was essential. Once the difference in the 
number of free parameters is considered, the edge goes to the MAX 
version again. That is, both AIC and BIC for the MAX version (4108.50 
and 4139.03, respectively) were lower than the corresponding values for 
the AVG version (4109.22 and 4144.84, respectively). Therefore, as with 
Dataset A, there is no compelling reason to favor the AVG decision 
variable over the MAX decision variable for lineup rejections, though it 
is a much closer call for this dataset. 

Dataset C: These data come from Experiment 2 of Yilmaz et al. 
(2022), which involved a nine-person simultaneous photo lineup. 
Table 5 presents the raw frequency counts for the various lineup de-
cisions made with low, medium, or high confidence. For this 

Table 2 
Maximum likelihood parameter estimates, number of free parameters (npar), and chi-square goodness-of-fit statistics for each model fit to Dataset A.  

Model µTarget c1 c2 c3 c4 c5 r npar χ2 

Ind Obs 
MAX           2.15  0.57  1.03  1.42  1.98  2.57 0.53 7  31.03          

Ind Obs 
AVG           2.24  − 0.33  0.04  1.52  2.05  2.63 0.30 7  37.12          

Ens 
MAX           2.42  0.90  1.18  1.44  1.87  2.37 – 6  52.51          

Ens 
AVG           2.42  − 0.36  0.51  1.44  1.87  2.38 0.66 7  52.43           

Table 3 
Frequency counts for Dataset B.   

Target Present Target Absent 

Confidence Suspect Filler Reject Filler Reject 

Low 123 27 47 95 111 
Med 153 5 39 55 146 
High 203 5 29 18 142  

2 When the MAX rule is used for the Ensemble model, the subtractive process 
eliminates information about the correlation in much the same way that a 
within-subjects t-test is based on a dependent variable in which correlated error 
variance has been subtracted away. 
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experiment, NTP = 259 and NTA = 243, bringing the total N to 502. For 
target-present lineups, the hit rate was .71, the filler ID rate (number of 
filler IDs divided by the number of target-present lineups) was .08, and 
the lineup rejection rate (number of lineup rejections divided by the 
number of target-present lineups) was.20. For target-absent lineups, the 
filler ID rate was .31, and the lineup rejection rate was .69. 

Table 6 shows the estimated parameter values and the chi-square 
goodness-of-fit statistics for the maximum-likelihood fits of the rele-
vant models to the data presented in Table 5. With regard to the Inde-
pendent Observations model, the MAX version provided a much better 
fit than the AVG version, (χ2 = 8.43 vs. χ2 = 31.77, respectively). With 
regard to the Ensemble model, the MAX and AVG versions provided 
similar fits (χ2 = 12.28 vs. χ2 = 10.34), with the edge going to the AVG 
version. Setting r to 0 equalized the number of free parameters for the 
two versions of the Ensemble model, but it again significantly worsened 
the fit, χ2(1) = 15.02 – 10.34 = 4.68, p < .05. Thus, as with the two 
previous datasets, this correlation parameter was necessary to provide a 
good fit. Moreover, once the difference in the number of free parameters 
is considered, the edge goes to the MAX version once again. That is, both 
AIC and BIC for the MAX version (1755.98 and 1781.29, respectively) 
were lower than the corresponding value for the AVG version (1757.12 
and 1786.65, respectively). 

Dataset D: The experiment from which these data were taken had 
two standard simultaneous lineup conditions, a short exposure condi-
tion and a long exposure condition, to which participants were randomly 
assigned. As might be expected, overall performance was better in the 
long-exposure condition, so we fit the models to the data from each 
condition separately. Consider first the data from the short-exposure 
condition. 

Table 7 presents the raw frequency counts for the various lineup 
decisions made with low, medium, or high confidence. For this condi-
tion, NTP = 874 and NTA = 879, bringing the total N to 1753. For target- 
present lineups, the hit rate was .56, the filler ID rate was .22, and the 

lineup rejection rate was also .22. For target-absent lineups, the filler ID 
rate was .48, and the lineup rejection rate was .52. 

Table 8 shows the estimated parameter values and the chi-square 
goodness-of-fit statistics for the maximum-likelihood fits of the models 
to the data shown in Table 7. With regard to the Independent Obser-
vations model, the MAX and AVG versions provided nearly identical fits 
(χ2 = 19.17 vs. χ2 = 19.80, respectively), and the same was true for the 
Ensemble model (χ2 = 31.69 vs. χ2 = 30.35). Fixing r at 0 for the AVG 
version of the Ensemble model to equalize the number of free parame-
ters with the MAX version at 6 significantly worsened the fit, χ2(1) =
44.73 – 30.35 = 14.38, p < .001. Thus, as in the previous datasets, the 
AVG version needed r to fit the data, and once the difference in the 
number of free parameters is taken into account, the edge goes to the 
MAX version of the Ensemble model yet again. That is, both AIC and BIC 
for the MAX version (6583.82 and 6616.63, respectively) were lower 
than the corresponding value for the AVG version (6584.36 and 
6622.64, respectively). 

Next consider first the data from the long-exposure condition. 
Table 9 presents the raw frequency counts for the various lineup de-
cisions made with low, medium, or high confidence. For this condition, 
NTP = 929 and NTA = 887, bringing the total N to 1816. For target- 
present lineups, the hit rate was .72, the filler ID rate was.11, and the 
lineup rejection rate was .17. For target-absent lineups, the filler ID rate 
was .39, and the lineup rejection rate was .61. 

Table 10 shows the estimated parameter values and the chi-square 
goodness-of-fit statistics for the maximum-likelihood fits of the models 
to the data shown in Table 9. With regard to the Independent Obser-
vations model, the MAX version provided a better fit than the AVG 
version (χ2 = 4.66 vs. χ2 = 9.76, respectively). With regard to the 
Ensemble model, the AVG version outperformed the MAX version in 
terms of the unadjusted chi-square goodness-of-fit statistic (χ2 = 16.43 
vs. χ2 = 19.32, respectively), though the AVG version needed the extra r 
parameter to win that competition. That is, eliminating r in the AVG 

Table 4 
Maximum likelihood parameter estimates, number of free parameters (npar), and chi-square goodness-of-fit statistics for each model fit to Dataset B.  

Model µTarget c1 c2 c3 c4 c5 r npar χ2 

Ind Obs 
MAX  

2.13  0.48  0.99  1.37  1.95  2.57 0.62 7  21.29 

Ind Obs 
AVG  

2.25  − 0.40  0.04  1.50  2.06  2.68 0.21 7  21.97 

Ens 
MAX  

2.48  0.91  1.21  1.46  1.91  2.44 – 6  21.64 

Ens 
AVG  

2.49  − 0.46  0.73  1.46  1.91  2.45 0.58 7  20.70  

Table 5 
Frequency counts for Dataset C.   

Target Present Target Absent 

Confidence Suspect Filler Reject Filler Reject 

Low 56 14 30 50 61 
Med 62 7 17 16 66 
High 66 1 6 10 40  

Table 6 
Maximum likelihood parameter estimates, number of free parameters (npar), and chi-square goodness-of-fit statistics for each model fit to Dataset C.  

Model µTarget c1 c2 c3 c4 c5 r npar χ2 

Ind Obs 
MAX  

2.44  1.00  1.34  1.66  2.17  2.72 0.31 7  8.43 

Ind Obs 
AVG  

2.16  − 0.50  − 0.18  1.52  2.17  2.78 0.11 7  31.77 

Ens 
MAX  

2.30  0.78  1.11  1.42  1.92  2.46 – 6  12.28 

Ens 
AVG  

2.29  − 0.53  0.26  1.42  1.92  2.45 0.29 7  10.34  

Table 7 
Frequency counts for Dataset D (short exposure).   

Target Present Target Absent 

Confidence Suspect Filler Reject Filler Reject 

Low 177 123 100 253 175 
Med 145 44 49 109 162 
High 169 27 40 63 117  
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version by fixing it value at 0 significantly worsened the fit, χ2(1) =
33.48 – 16.43 = 17.05, p < .001. This time, penalizing the AVG version 
for its extra parameter yielded a split decision. With regard to AIC, the 
AVG version still provided the better fit (6390.08 vs. 6391.00 for the 
average and MAX versions, respectively). With regard to BIC, the MAX 
version provided the better fit (6428.61 vs. 6424.03 for the AVG and 
MAX versions, respectively). 

Dataset E: These data were taken from an experiment reported by 
Brewer and Wells (2006). Not only are these data from an independent 
lab, but they are often cited in support of the claim that the confidence- 
accuracy relationship is weak for lineup rejections. Thus, if the asym-
metry in confidence-accuracy relationships for positive and negative IDs 
from lineups is the result of different decision variables being used, these 
findings may offer the best chance of detecting that fact. 

In this study, subjects first watched a video in which they viewed two 
targets, a thief and a waiter. For each condition, NTP = 600 and NTA =

600, bringing the total N to 1200. All subjects were tested for their 
ability to identify the thief from an 8-member simultaneous lineup. After 
completing the lineup memory test for the thief, the subjects were 
subsequently tested for their ability to identify the waiter from a 
different 8-member simultaneous lineup. Thus, because each subject 
was tested twice, there were 2400 observations in all. Table 11 presents 
the raw frequency counts. Collapsed across the Thief and Waiter con-
ditions, for target-present lineups, the hit rate was .49, the filler ID rate 
was .20, and the lineup rejection rate was .31. For target-absent lineups, 
the filler ID rate was .44, and the lineup rejection rate was .56. 

The confidence-accuracy relationships for positive and negative IDs 
(averaged over the thief and waiter conditions) are shown in Fig. 3. Note 
that, for positive IDs, the confidence-accuracy relationship in Fig. 3A is 
plotted in the conventional way, with accuracy (% Correct) quantifying 
the accuracy of suspect IDs (i.e., filler IDs are excluded from the calcu-
lation). The data for positive IDs are typically plotted this way because it 
answers the relevant legal question: Given that a suspect was identified 
with a particular level of accuracy, how likely is that ID to be accurate 
(Wixted & Wells, 2017)? The relationship is stronger for positive IDs 
(and high-confidence accuracy is much higher for positive IDs than for 
negative IDs), but a relationship for negative IDs is nevertheless 
apparent. 

Smith et al. (2023) hypothesized that a focus on suspect IDs for 
positive IDs may explain the asymmetry in the confidence-accuracy 
relationship for positive vs. negative IDs. Unlike for positive IDs, for 
negative IDs, an outcome is counted as correct or incorrect whether the 
MAX signal is generated by the suspect or a filler because, when a lineup 
is rejected, it is not known which face generated the MAX signal. To 
make the plots for positive and negative IDs more comparable, in 
Fig. 3B, accuracy for positive IDs was re-computed by counting any ID 
from a TP lineup as correct (a suspect ID or a filler ID), whereas any ID 
from a TA lineup was counted as being incorrect (a suspect ID or a filler 
ID). As illustrated in Fig. 3B, it remains the case that the confidence- 
accuracy relationship is stronger for positive IDs, and a high- 

Table 8 
Maximum likelihood parameter estimates, number of free parameters (npar), and chi-square goodness-of-fit statistics for each model fit to Dataset D (short exposure).  

Model µTarget c1 c2 c3 c4 c5 r npar χ2 

Ind Obs 
MAX           1.48  0.32  0.73  1.10  1.79  2.30 0.47 7  19.17          

Ind Obs 
AVG           1.54  − 0.56  − 0.19  1.19  1.84  2.35 0.12 7  19.80          

Ens 
MAX           1.64  0.72  0.95  1.18  1.67  2.09 – 6  31.69          

Ens  

AVG           
1.64  − 0.60  0.26  1.18  1.67  2.09 0.44 7  30.35           

Table 9 
Frequency counts for Dataset D (long exposure).   

Target Present Target Absent 

Confidence Suspect Filler Reject Filler Reject 

Low 110 39 71 169 130 
Med 187 37 47 119 188 
High 372 23 43 55 226  

Table 10 
Maximum likelihood parameter estimates, number of free parameters (npar), and chi-square goodness-of-fit statistics for each model fit to Dataset D (long exposure).  

Model µTarget c1 c2 c3 c4 c5 r npar χ2 

Ind Obs 
MAX           2.07  0.65  1.04  1.32  1.75  2.30 0.45 7  4.66          

Ind Obs 
AVG           2.08  − 0.38  − 0.16  1.33  1.76  2.31 0.16 7  9.76          

Ens 
MAX           2.28  0.90  1.13  1.32  1.64  2.10 – 6  19.32          

Ens 
AVG           2.27  − 0.15  0.53  1.32  1.64  2.09 0.30 7  16.43           

Table 11 
Frequency counts for Dataset E (Brewer & Wells, 2006).    

Target Present Target Absent 

Condition Confidence Suspect Filler Reject Filler Reject  

Low 30 35 71 53 47 
Thief Med 50 36 85 73 110  

High 142 34 118 71 245  
Low 56 46 24 107 71 

Waiter Med 96 44 28 131 76  
High 215 42 48 91 125  
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confidence positive ID is much more accurate than a high-confidence 
negative ID. The question of interest here is whether that difference 
arises because confidence in a lineup rejection is based on an AVG 
signal. 

Table 12 shows the estimated parameter values and the chi-square 
goodness-of-fit statistics for the maximum-likelihood fits of the MAX 
and AVG versions of the Ensemble and Independent Observations 
models to the data. The data from the thief and waiter conditions were 
fit separately and then the results were averaged together. With regard 
to the Independent Observations model, the MAX version provided a 
much better fit than the AVG version (χ2 = 12.97 vs. χ2 = 26.34, 
respectively), but the Ensemble model returned the opposite verdict 
before correcting for the differing number of free parameters (χ2 =

14.45 vs. χ2 = 8.97). Once again, penalizing the average version for its 
extra parameter yielded a split decision. With regard to AIC, the AVG 
version provided an ever-so-slightly better fit (6487.22 vs. 6487.41 for 
the average and MAX versions, respectively). With regard to BIC, the 
MAX version provided the better fit (6522.85 vs. 6517.95 for the AVG 
and MAX versions, respectively). 

Thus, on balance, the verdict would have to favor the MAX decision 
variable. Stated differently, it would hard to make a compelling case in 
favor of the AVG decision variable based on these findings. 

General discussion 

The idea that the decision variable for lineup rejections might be 
based on an average memory signal was first suggested by Weber and 
Brewer (2006): 

Alternatively, as a negative decision indicates that the stimulus 
does not match well with any of the relevant items in memory, 
confidence in negative decisions could be based on the average (or 
median) match between all the relevant items in memory and the 
test stimulus. This type of aggregated basis for confidence therefore 
suggests a potential difference between confidence in positive and 
negative decisions that could underlie the observed positive–-
negative calibration difference (p. 19). 

Lindsay et al. (2013) considered this possibility as well, as did Yilmaz 
et al. (2022). This hypothesis seems plausible because when a lineup is 
rejected, no single face is identified; instead, the entire set of faces is 
collectively rejected. Simulations conducted by Yilmaz et al. (2022) 
suggested that part of the explanation for the asymmetric confidence- 
accuracy relationship might be that the decision variable used to rate 
confidence a lineup is rejected is the average of the memory signals 
generated by the faces in the lineup. However, Yilmaz et al. (2022) did 
not attempt to directly test that hypothesis, as we have done here. 

The model-fitting approach we used required modifying the 

Fig. 3. Confidence-accuracy data from Brewer and Wells (2006) after averaging across the Thief and Waiter conditions. The data were also collapsed over two 
between-subjects experimental conditions (namely high-vs.-low-similarity foils, and biased vs. unbiased instructions). A. The accuracy score for positive IDs is based 
on suspect IDs only. B. The accuracy score for positive IDs is based on suspect or filler IDs (with filler IDs counted as correct for TP lineups and incorrect for TA 
lineups). The dashed line in each plot does not represent perfect calibration (where 0% confidence represents 0% accuracy and 100% confidence represents 100% 
accuracy) but instead represents a perfect confidence-accuracy relationship (where 0% confidence represents chance accuracy of 50% correct and 100% confidence 
represents perfect performance, or 100% accuracy). 

Table 12 
Maximum likelihood parameter estimates, number of free parameters (npar), and chi-square goodness-of-fit statistics for each model fit to Dataset E (averaged over the 
Thief and Waiter conditions).  

Model µTarget c1 c2 c3 c4 c5 r npar χ2 

Ind Obs 
MAX           1.57  0.91  1.19  1.37  1.66  2.08 0.18 7  12.97          

Ind Obs 
AVG           1.60  − 0.24  0.09  1.45  1.72  2.12 0.01 7  26.34          

Ens 
MAX           1.71  1.12  1.30  1.43  1.64  1.97 – 6  14.45          

Ens 
AVG           1.70  0.05  0.87  1.43  1.64  1.97 0.28 7  8.97           
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likelihood functions for the Independent Observations and Ensemble 
models to allow for the possibility that confidence for lineup rejections is 
based on an average memory signal. However, when those newly 
derived models were fit to empirical data from multiple simultaneous 
lineup experiments, a relatively clear verdict was obtained. For the In-
dependent Observations model, the MAX version fit better than the 
average version in the clear majority of comparisons. The verdict was 
similar for the Ensemble model. However, depending on how the dif-
ference in the extra parameter associated with AVG model was 
addressed (AIC or BIC), the AVG version of the model sometimes yielded 
a better fit. Still, our overall findings favor the idea that the MAX 
memory signal determines confidence not only for positive IDs but also 
for negative IDs. Also, as noted earlier, it seems fair to say that the idea 
that the MAX signal determines confidence in a lineup rejection is the 
default view—the idea that an average signal might be used as the basis 
of confidence was proposed only in response to an empirical anomaly 
(namely, the comparatively weak confidence-accuracy relationship for 
lineup rejections). Thus, even if the AVG model had slightly out-
performed the MAX model across the totality of these datasets, we would 
not have considered that outcome to be sufficient evidence to overturn 
the default view. Since AVG model did not even perform that well, there 
is even less reason to adopt a new perspective. 

At the same time, our model-fitting results do not prove that the AVG 
model is wrong. Going forward, more direct tests might help to establish 
its viability. For example, a standard simultaneous lineup condition 
could be compared to a condition in which witnesses who reject the 
lineup are asked to provide a confidence rating to everyone in the 
lineup. In the standard lineup condition, when the witness rejects the 
lineup, the question would be “How certain are you that the person from 
the video is not in this lineup?” This rating would apply to the collective 
set of faces in the lineup. For the rate-them-all condition, the faces would 
be individually rated, and for each one, the question would be “How 
certain are you that this is not the person from the video?” For each 
participant in the rate-them-all condition, we would have both an 
average rating and a MAX rating. The question of interest is whether the 
distribution of collective ratings from the standard condition (based 
either on the MAX or AVG signal) more closely resembles the distribu-
tion of MAX ratings or the distribution of average ratings from the rate- 
them-all condition. Still, until more direct evidence in its favor is 
adduced, the assumption that an AVG decision variable underlies con-
fidence in lineup rejections should not replace the default view. 

One interesting issue that emerged for the first time is that, when 
fitting signal detection models to lineup data, the results consistently 
indicated that the competing memory signals in lineups are correlated. 
This means that if one face in the lineup generates a weak memory 
signal, all of the faces in the lineup tend to do the same. This is expected 
given that a lineup contains faces that were selected precisely because 
they are similar to each other, so the memory signals they generate 
should ebb and flow together (Wixted et al., 2018; Shen et al., 2023). 
Still, in past research involving fits of the Independent Observations 
model, the estimated correlation parameter did not differ from 0 (e.g., 
Shen et al., 2023).3 In Shen et al. (2023), this result likely occurred 
because the similarity of fillers was manipulated across conditions, and 
discriminability increased monotonically as filler similarity decreased. 
The Independent Observations model most clearly predicts this filler- 
similarity pattern when the correlation parameter equals 0, with the 
magnitude of the filler-similarity effect decreasing as the correlation 
increases. Hence, the best fit was obtained when the correlation 
parameter was 0 even though the correlation must increase with 
increasing filler similarity. One reason why Shen et al. (2023) argued in 

favor of the Ensemble model was that it more naturally accounts for the 
filler-similarity findings. 

In the datasets analyzed here, we fit models to data from individual 
conditions, and the expected correlation was finally reliably detected by 
both the Independent Observations model and the AVG version of the 
Ensemble model. However, our results leave unexplained the mystery 
that the averaging hypothesis was originally advanced to explain: why is 
the confidence-accuracy relationship for positive vs. negative IDs often 
asymmetrical? An attractive but ultimately untenable explanation 
would appeal to a similar asymmetry observed in the list-learning 
literature, where the variance of the target distribution is found to be 
greater than the lure distribution almost invariably. Mickes et al. (2011) 
argued that this asymmetry may explain why the confidence-accuracy 
relationship is typically weaker for “new” decisions compared to “old” 
decisions—even in the list-learning paradigm. However, a similar 
asymmetry is typically not observed when memory is tested using 
lineups, and it sometimes goes in the opposite direction (e.g., Shen et al., 
2023). Thus, a different explanation for the asymmetry sometimes 
observed for lineups presumably applies. 

An approach that may unravel the mystery would be to investigate 
the underlying mechanisms that give rise to the memory signals that 
signal detection theory takes for granted. The signal detection models 
under consideration make assumptions about those memory signals (e. 
g., they are normally distributed, the effective signal might be the MAX 
signal minus the mean signal, etc.), but they are silent about the 
mechanisms that give rise to them in the first place. Recently, Colloff 
et al. (2021) and Shen et al. (2023) proposed a simplified feature- 
matching mechanism that generates the face recognition memory 
signal, and much more comprehensive feature-matching models have 
been used to guide thinking about recognition for some time (e.g., 
Shiffrin & Steyvers, 1997). Yet, so far, those models do not offer reasons 
as to why the confidence-accuracy relationship for lineup rejections 
would differ from the confidence-accuracy relationship for positive IDs. 

Other feature-matching models might offer some insight, such as the 
global similarity model advanced by Mewhort and Johns (2000). Global 
similarity based on feature matching is still assumed to contribute to the 
memory signal, but Mewhort and Johns (2000) found that the rejection 
of novel items was enhanced when test items contained novel features. 
This was true even when the remaining features strongly matched a 
studied item, yielding a strong familiarity signal based on overall simi-
larity. They called this the “extralist feature effect” (see Osth et al., 
2023), and it is akin to what others call “recall to reject” (e.g., Rotello & 
Heit, 2000). Yet, even this approach does not seem to account for the 
weak confidence-accuracy relationship for lineup rejections. To the 
extent that the extralist feature effect occurs (e.g., if all of the faces in the 
lineup have a feature not shared by the representation of the perpetrator 
in the brain), one might expect the lineup rejection to be made both 
confidently and accurately. But the empirical puzzle to be explained is 
the differentially low accuracy associated with high-confidence lineup 
rejections. 

Although lineup rejections remain a bit of a mystery, it seems that 
confidence in those decisions is based on the MAX face, just as positive 
IDs are. Thus, the take-home message of our investigation is that when a 
lineup is rejected, the weaker the decision variable associated with the 
MAX face is, the more confident the witness is that the perpetrator is not 
in the lineup. 

CRediT authorship contribution statement 

Anne S. Yilmaz: Conceptualization, Methodology, Writing – original 
draft, Writing – review & editing. John T. Wixted: Conceptualization, 
Formal analysis, Writing – review & editing, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 

3 The standard version of the Ensemble model does not have a correlation 
parameter, so fits of this model would not detect the correlation even if it is 
present. The AVG version of the model used here for the first time also detected 
correlated memory signals. 

A.S. Yilmaz and J.T. Wixted                                                                                                                                                                                                                 



Journal of Memory and Language 135 (2024) 104493

10

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request.  

Appendix 

Investigating the possibility that lineup rejections are based not on the MAX signal but instead on a different decision variable, g(x) = mean(x), 
requires modifying the likelihood functions that have been used to fit the models in the past. We next specify the likelihood functions for this 
alternative model of confidence in lineup rejections, first in general terms and then in model-specific terms (i.e., in terms specific to the Ensemble 
model and then in terms specific to the Independent Observations model). 

Lineup rejections based on the average memory signal (in general terms) 

The likelihood functions for both models consist of the joint probability of multiple events. For example, in the case of a lineup rejection on a given 
trial, there is (1) the probability of observing a given memory strength, xi, for face i, (2) the probability that xi is the MAX value in the lineup, (3) the 
probability that the decision variable for positive IDs, f(x), falls below the decision criterion given that xi is the MAX value, and (4) the probability that 
the decision variable for negative IDs, g(x), falls above a confidence criterion given that f(x) falls below the decision criterion. 

More formally, assuming a standard signal detection model, the probability of observing target memory strength xi (event 1) is given by a Gaussian 
distribution with mean, µi and standard deviation σ: 

P(xi) = ϕ(zi) (1) 

where ϕ is the Gaussian probability density function and zi =
xi − μi

σ . As a concrete example, assume that it is a target-present lineup and that the face 
in question is that of the guilty suspect such that xi = x1 and µ1 = µTarget. In that case, P(x1) is the probability of drawing a particular memory strength 
signal from the target distribution in Fig. 2. 

Continuing with this example (i.e., xi = x1), consider next the probability that x1 is the MAX signal in the lineup. The probability that x1 is greater 
than the value of all fillers in a lineup of size k (event 2) is: 

P(x2⋯xk < x1) =
∏k

j=2
Φ
(x1 − μj

σ

)
(2) 

where Φ is the Gaussian CDF (i.e., the standard cumulative normal distribution). x2⋯xk in this example correspond to the k − 1 fillers in the lineup, 
so μj can be set to 0 for convenience. The quantity Φ

( x1 − μj
σ

)
represents the probability of drawing a value less than x1 for filler j, and the product from j =

2 to k in Equation (2) is the probability that all k − 1 fillers fall below x1, in which case x1 = max(x). 
In our running example, xi = x1 (this is the suspect’s memory signal) and x1 = max(x). In addition, f(x) represents the decision variable for positive 

IDs, which always involves the MAX signal but differs for the two models. That is, f(x), is equal to x1 according to the Independent Observations model 
and is instead equal to x1 − mean(x) according to the Ensemble model. The probability that the decision variable associated with x1, f(x), falls below the 
decision criterion (event 3) is simply: 

P(f (x) < c3|x1 = max(x) ) (3) 

where c3 is the overall decision criterion in Fig. 2. 
For lineup rejections, the decision variable is g(x) = mean(x). The probability that g(x) falls above a relevant confidence criterion (ci) for lineup 

rejections (event 4) given that x1 = max(x) and that f(x) falls below c3 is given by: 

P(g(x) > ci|x1 = max(x), f (x) < c3 ) (4) 

where g(x) = mean(x), and ci is c1 or c2 in Fig. 2. 
Thus, the probability of observing x1 (i.e., the target in a target-present lineup in our running example) and the probability that x1 is greater than 

the value of all fillers (i.e., lures) in a lineup of size k and the probability that the decision variable for making a positive ID, f(x), falls below the 
decision criterion (c3), and the probability that the decision variable for rating confidence in a negative ID, g(x), falls above ci is given by Equation (1) 
× Equation (2) × Equation (3) × Equation (4). 

Lineup rejections based on g(x) according to the Ensemble model 

The details for Equations (1), 2, and 3 have been presented before (Wixted et al., 2018), but the details of Equation (4) are new and are presented 
here for the first time. For the Ensemble model, the model-specific version of Equation (4) is simple and straightforward, so we begin there. For a given 
lineup that has been rejected, the mean of x is conceptualized as a random variable drawn from a distribution of means. Thus, we need to specify the 
mean and standard deviation of that distribution. For a single lineup with k faces, mean(x) = (1/k)

∑k
1xi. For a target-present lineup, the memory 

signal for the guilty suspect is drawn from a normal distribution with a mean of μTarget and a standard deviation of σ, whereas the memory signals for 
the fillers are drawn from a normal distribution with a mean of μLure and a standard deviation of σ. That is, xi=1 N(μTarget , σ) and xi∕=1 N(μLure,σ). Thus, 

the mean of means across target-present lineups of size k is equal to μTarget+(k− 1)μLure
k . For target-absent lineups, the mean of means is equal to kμLure

k = μI. 
Because we set μLure = 0 for convenience, the mean of means for target-present and target-absent lineups come to μTarget

k and 0, respectively. For the 
uncorrelated case (r = 0), the standard deviation for the mean of means is, in both cases, equal to σ/

̅̅̅
k

√
, where σ is set to 1 for convenience. Thus, 

according to the central limit theorem, for target-present lineups, Xi N
(

μTarget
k , 1̅̅

k
√

)
, and for target-absent lineups, Xi N

(
0, 1̅̅

k
√

)
. However, as noted 

earlier, the memory signals generated by the faces in a lineup are likely correlated (r > 0), and in that case the standard deviation for the mean of 
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means is given by 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+r(k− 1)

√
̅̅
k

√ . 
It is worth highlighting the fact that, ordinarily, the correlation coefficient does not show up in the equations for the Ensemble model even when 

the memory signals in a lineup are assumed to be correlated. The reason is that when the decision variable is max(x) − mean(x), as it is for MAX version 
of the Ensemble model for both positive and negative IDs (and as it still is for positive IDs even for the average version of lineup rejections under 
consideration now), correlated error is subtracted out and therefore cannot be estimated from the data (i.e., the correlation coefficient is not usually a 
free parameter for this model). However, if the decision variable switches to mean(x) when a lineup is rejected (the average version), now the cor-
relation can be estimated as a free parameter even for the Ensemble model because, for lineup rejections, the correlation has not been subtracted out of 
the decision variable. Thus, this version of the Ensemble model has one additional free parameter (r) compared to the MAX version that assumes a 
max(x) − mean(x) decision variable for both positive and negative IDs. 

In more detail, for lineup i that has been rejected, if Xi falls below c1, the lineup is rejected with high confidence. If it falls above c1 but below c2, the 
lineup is rejected with medium confidence, and if it falls above c2, the lineup is rejected with low confidence. What makes these equations so 
straightforward and easy to use in the case of the Ensemble model is that even though the mean decision variable is relevant only when f(x) =
max(x) − mean(x) falls below c3 (i.e., only when the lineup is rejected), that conditionality does not affect the mean and standard of the relevant 
distribution of means. This is true because both the mean and standard deviation of the distribution of means are independent of the variable that 
determines the decision outcome, namely, max(x) − mean(x). Thus, for the Ensemble model, event 4 is 

P(Xi) = ϕ(Zi)

Where Zi =
Xi − μM

σM
, with μM representing the mean of means (μG

k for target-present lineups and 0 for target-absent lineups) and σM representing the 

standard deviation of means ( 1̅̅
k

√ for both lineup types in the uncorrelated case and 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+r(k− 1)

√
̅̅
k

√ in the more likely correlated scenario). 

Lineup rejections based on g(x) according to the Independent Observations model 

The situation is more complicated for the Independent Observations model, where the mean decision variable for lineup rejections is computed 
when f(x) = max(x) falls below c3. Under those conditions, the mean and standard deviation of the distribution of means are not independent of the 
decision outcome. Instead, when the lineup is rejected, the k memory signals in the lineup from which the mean is computed are conceptualized as 
having been drawn from a truncated normal distribution ranging from a minimum of − ∞ to a maximum of max(x). Under such conditions, the 
distribution of means would not be Gaussian, and the mean and standard deviation of that distribution could not be directly computed based on the 
central limit theorem, as was the case for the Ensemble model. This raises a question: When specifying this mean (i.e., the hypothesized decision 
variable) as a random variable for a given rejected lineup with a given max(x), what distribution is the mean value drawn from? This is the 
complication associated with modeling confidence in a lineup rejection based on an average memory signal according to the Independent Obser-
vations model. 

Fig. A1. An illustration uncorrelated (left column) and correlated (right column) memory signals across three lineups. In the left column, between lineup variance 
(σ2

b ) is equal to zero. In the right column, σ2
b is greater than zero. The larger σ2

b is relative to within lineup variance (σ2
w), the more the memory signals are correlated. 

The magnitude of the correlation (r) is equal to r =
σ2

b
σ2

b+σ2
w
. 
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Fortunately, a nearly exact approximation is available. For a given value of max(x), equations to compute the mean and variance of single values 
randomly drawn from the corresponding truncated normal distribution-that is, with values drawn below max(x)-have been provided (see Greene, 
2003, p. 759). From there, it is a simple matter to compute the mean and standard deviation of the mean of k values randomly drawn from truncated 
target or lure normal distributions. For a given max(x), we denote the mean and standard deviation of the distribution of means as μT and σT, 
respectively, where the subscript T indicates that the parameter is based on values drawn from a truncated normal distribution. For a target-present 
lineup, these values are based on k − 1 draws from the lure distribution truncated at max(x) and one draw from the target distribution that is also 
truncated at max(x). For a target-absent lineup, these values are based on k draws from the lure distribution truncated at max(x). 

With μT and σT in hand, even though the distribution of means is not Gaussian in form, we can use the Gaussian probability density function as a 
close approximation to estimate the probability of drawing a particular mean, Xi, given that the lineup was rejected: 

P(Xi) = ϕ(Zi)

where Zi =
Xi − μT

σT
. The Gaussian PDF approximation becomes more precise the larger k is according to the central limit theorem. But even with k = 6 

(a standard lineup size and one that we used in most of the research reported here), the approximation is surprisingly close to being exact. For the 
Independent Observations model, this is event 4 specified by Equation (4) above. 

Finally, we need to incorporate correlated memory signals into the Independent Observations model. Although this was simple and straightforward 
for the Ensemble model (requiring only a modification to the equation for the standard deviation of the distribution of means), more than that is 
required for the Independent Observations model, as illustrated in Fig. A1. The left panel illustrates three lineups in which memory signals are un-
correlated, whereas the right panel illustrates three lineups in which the memory signals are positively correlated. When memory signals are un-
correlated, the variance in the memory signals generated by guilty suspects and fillers reflect random error within lineups (σ2 = σ2

w), with no 
additional variance occurring between lineups. By contrast, when memory signals are correlated, it means that when the memory signal generated by 
the guilty suspect is strong, the memory signals generated by the fillers are also strong, and when the memory signal generated by the guilty suspect is 
weak, the memory signals generated by the fillers are also weak. In other words, the variability in memory signals has a between-lineup component 
(σ2

b). This represents an additional source of variability between lineups such that σ2 = σ2
w + σ2

b . The larger σ2
b is relative to σ2

w, the more correlated the 

memory signals are, with the correlation (r) being equal to r =
σ2

b
σ2

b+σ2
w
. Because we set σ2 = 1 throughout, this means that σ2

w + σ2
b = 1, so the equation 

for r simplifies to r = σ2
b . 

For modeling purposes, a positive correlation is introduced to the likelihood function for the Independent Observations model by adding another 
event, which, in this case, is another random variable to create between-lineup variance. To do so, δ is drawn from a Gaussian distribution with a mean 
of 0 and standard deviation of σb, and it is added to the means of both the target and lure distributions (thereby creating the kind of variability 
observed in the right column of Fig. A1). More formally, δ N(0,σb), and this can be conceptualized as event 0 (occurring prior to events 1 through 4). 
Thus, the probability of observing target memory strength xi (event 1) is now given by a Gaussian distribution with mean, µi and standard deviation σ: 

P(xi) = ϕ(zi)

where, now, zi =
xi − (μi+δi)

σ . As before, for the guilty suspect in a target-present lineup, μi = μTarget (an estimated parameter) and for all other lineup 
members in target-present or target-absent lineups, μi = μLure ≡ 0. 

In the case of correlated memory signals for the Independent Observations model, across all five events (events 0 through 4), there are three 
random variables, with each integrated from − ∞ to + ∞: δi, xi, and Xi. The triple integral makes for a slow fitting of this version of the model, but the 
fit is nonetheless precise. 

Summary. Both versions of the Independent Observations model (i.e., versions that assume a MAX or average decision variable for lineup re-
jections) have the same seven free parameters: μTarget, c1, c2, c3, c4, c5, and r. However, the two corresponding versions of the Ensemble model do not 
both have seven free parameters. The version of the Ensemble model that assumes a max(x) − mean(x) decision variable for both positive and negative 
IDs has six free parameters (all but r), but the version of the Ensemble model that assumes a max(x) − mean(x) decision variable for positive IDs and 
average decision variable for negative IDs has seven free parameters (now including r). All four versions of the models under consideration here (two 
versions of the Independent Observations and two versions of the Ensemble model) were verified using model recovery simulations. That is, the 
models differentially fit their own simulated data very accurately, and the maximum likelihood fits precisely estimate the programmed parameter 
values. 
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