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Abstract
The relationship between confidence and accuracy in recognition memory is important in real-world settings (e.g.,
eyewitness identification) and is also important to understand at a theoretical level. Signal detection theory assumes
that recognition decisions are based on continuous underlying memory signals and therefore inherently predicts that the
relationship between confidence and accuracy will be continuous. Almost invariably, the empirical data accord with this
prediction. Threshold models instead assume that recognition decisions are based on discrete-state memory signals. As a
result, these models do not inherently predict a continuous confidence-accuracy relationship. However, they can accom-
modate that result by adding hypothetical mapping relationships between discrete states and the confidence rating scale.
These mapping relationships are thought to arise from a variety of factors, including demand characteristics (e.g.,
instructing participants to distribute their responses across the confidence scale). However, until such possibilities are
experimentally investigated in the context of a recognition memory experiment, there is no sense in which threshold
models adequately explain confidence ratings at a theoretical level. Here, we tested whether demand characteristics
might account for the mapping relationships required by threshold models and found that confidence was continuously
related to accuracy (almost identically so) both in the presence of strong experimenter demands and in their absence. We
conclude that confidence ratings likely reflect the strength of a continuous underlying memory signal, not an attempt to
use the confidence scale in a manner that accords with the perceived expectations of the experimenter.
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Introduction

The relationship between confidence and accuracy is im-
portant to understand at a theoretical level. For example,
in the field of eyewitness identification, it was long be-
lieved that confidence in a positive identification was
largely unrelated to its accuracy (Sporer, Penrod, Read,
& Cutler 1995; Wells & Murray, 1984). The implication
was that judges and jurors should disregard confidence
and instead concentrate on the fact that eyewitness mem-
ory is fallible. Courts across the USA accepted that

science-based recommendation, and some presumably
still do.1 However, in recent years, it has become clear
that on an initial test of memory from a lineup (early in
a police investigation), confidence is in fact highly pre-
dictive of accuracy (Wixted & Wells, 2017). In other
words, the higher the confidence, the more accurate the
identification. The same is true of memory for a list of
items in the basic-science laboratory (e.g., Mickes Hwe,
Wais, & Wixted, 2011; Tekin & Roediger, 2017).
Theoretically, what explains the graded relationship be-
tween confidence and accuracy?

Here, we consider two longstanding theoretical frame-
works that speak to that issue. The first one, signal detection
theory, is widely used in both psychology and neuroscience,
and it assumes that recognition decisions are based on a

1 For example, in 2012, the Connecticut Supreme Court stated "Courts across
the country now accept that there is at best a weak correlation between a
witness' confidence in his or her identification and its accuracy" (State v.
Guilbert, 2012).
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continuously distributed memory signal (Egan, 1958; Gold &
Shadlen, 2007; Karanian & Slotnick, 2018; Kepecs, Uchida,
Zariwala, & Mianen, 2008; Pleskac & Busemeyer, 2010;
Ratcliff & Starns, 2013; Wixted, 2007, 2019). The second
one, threshold theory, has a long history in the field of exper-
imental psychology, and it assumes that recognition decisions
are based on discrete memory states (Bröder & Shütz, 2009;
Kellen &Klauer, 2018; Malmberg, 2002; Province & Rouder,
2012). As illustrated in more detail below, continuous models
inherently predict that the relationship between confidence
and accuracy for both “new” and “old” decisions should be
continuous (i.e., as confidence increases, so should accuracy),
whereas threshold models inherently predict that the relation-
ship should either be flat (i.e., confidence is not at all predic-
tive of accuracy) or be characterized by a step function (i.e.,
confidence should be either low or high). Empirically, the
confidence-accuracy relationship is almost invariably contin-
uous, as illustrated in Fig. 1.

Essentially the same issue has been the focus of prior work
involving the shape of the confidence-based receiver operat-
ing characteristic (ROC), though when conceptualized from
that angle, it may seem like a less important issue to under-
stand. Threshold models predict that the ROC should be lin-
ear, but recognition memory ROCs are almost invariably cur-
vilinear (e.g., Egan, 1958; Ratcliff, Sheu, & Gronlund, 1992).
To accommodate that result (and to accommodate the contin-
uous confidence-accuracy relationship illustrated in Fig. 1),
threshold models require additional assumptions about the
mapping relationship between discrete psychological states
and the confidence rating scale (Malmberg, 2002). For exam-
ple, when a test item leads to the “detect-old” state, thereby
conclusively confirming its prior occurrence on the list (and
therefore warranting high confidence), participants are as-
sumed to nevertheless spread their responses continuously
across the confidence scale. Such assumptions are unnatural

in that they are not required by the model’s conception of the
nature of underlying memory signals. However, they do allow
threshold models to better fit the data well, sometimes even
better than signal detection models do (e.g., Kellen,
Singmann, Vogt, & Klauer, 2015).

From a pure mathematical modeling perspective, goodness of
fit (perhaps adjusted for model flexibility) is the ultimate adjudi-
cator between competing models. Thus, if ad hoc mapping pa-
rameters allow threshold models to fit the data as well as a signal
detection model, then, from this perspective, it means that the
confidence-based recognition memory data are inconclusive. As
such, to comparatively evaluate the models, other methods must
be used (e.g., Bröder & Schütz, 2009). However, this line of
reasoning simply takes confidence off the table, the very behav-
ior we seek to theoretically explain here.

What explains the graded relationship between confidence
and accuracy in recognition memory, both in the lab and in the
real world? From the threshold perspective, a variety of pos-
sibilities have been offered. As summarized by Bröder,
Kellen, Schütz, and Rohrmeier (2013), these possibilities in-
clude: (1) demand characteristics induced by instructing par-
ticipants to spread their responses across the confidence rating
scale; (2) sequential dependencies, where a response made to
one test item carries over to the next; and (3) scale biases, such
as anchoring effects. However, none of these possibilities has
been experimentally investigated in the context of a recogni-
tion memory experiment to determine whether they meaning-
fully contribute to the confidence-accuracy relationship. As
noted by Pazzaglia, Dubé, and Rotello (2013; Dubé, Rotello,
& Pazzaglia, 2013), without knowing which variable (if any)
explains the mapping parameters, there is no sense in which
they add to our understanding of how confidence is related to
accuracy. Here, we describe an effort to test whether demand
characteristics account for the hypothesized mapping relation-
ships. Before doing so, we briefly sketch out the competing
theoretical accounts (Green & Swets, 1966; Macmillan &
Creelman, 2005; Wixted, 2019).

Theoretical accounts of confidence in recognition
memory decisions

Signal detection theory Signal detection theory (SDT) is il-
lustrated in Fig. 2a. According to this account, items on a
recognition memory test generate underlying signals that are
normally distributed and therefore vary continuously in
strength across items. The confidence rating applied to an
“old” or “new” decision is determined by the strength of the
memory signal relative to a decision criterion. The farther it
falls above or below the decision criterion, the higher the
confidence. Figure 2b shows the continuous confidence-
accuracy relationship predicted by the signal detection model
depicted in Fig. 2a.

Fig. 1 The relationship between confidence and accuracy for memory
tested using a list of words and recognition decisions made using a 20-
point confidence scale (1 = “Sure New” to 20 = “Sure Old). Data from
Mickes et al. (2011)
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High-threshold theory The original threshold theory, known
as high-threshold theory (HTT), instead assumes that test
items are either recognized (the “detect-old” state) or they
are not recognized (the “non-detect” state). Test items enter
the detect-old state when the memory signal they generate
exceeds a "high" threshold. As illustrated in Fig. 3a, because
only targets can exceed that threshold, an above-threshold
signal is perfectly diagnostic of the item’s status as a target.
It therefore follows that any target that generates a memory
signal strong enough to exceed the threshold should be

declared “old” and with high confidence (i.e., 6 for a standard
6-point scale).

Some targets fail to generate a memory signal strong
enough to exceed the threshold, and all lures fail to do so.
Critically, for these below-threshold targets and lures, there
is no diagnostic signal upon which to base the recognition
decision. Under such conditions, it is not obvious what the
confidence rating should be, but even if those ratings are
spread out along the confidence scale (as they almost always
are), there should be no predictive relationship between

Fig. 3 (a) Depiction of the high-threshold theory (HTT) model, where p
represents the probability that a target will enter the detect-old state, and g
represents the probability that an item in the non-detect state is guessed to
be old. (b) The relationship between confidence and accuracy predicted
by the model shown in panel A assuming that (1) p = .60, with confidence
= 6 in the “detect” state, and (2) g = .50, with confidence spread evenly

across the scale in the “non-detect” state. Note that although the model
depicted here assumes a .50 probability of guessing “old” in the below-
threshold state, for low- and medium-confidence decisions, accuracy is
below .50 for old items and above .50 for new items because 60% of old
items are above threshold (reducing the number of old items available to
receive decisions made with low or medium confidence)

Fig. 2 (a) Standard equal-variance signal detection model of an old/new
recognition memory test in which targets and lures generate Gaussian
memory strength distributions, and responses are taken using a 6-point
scale, where 1 = Sure New and 6 = Sure Old. Memory strength is
represented on the x-axis, and test items that generate a signal strong
enough to exceed the decision criterion are declared to be “old,”
whereas test items that do not are declared to be “new.” As illustrated

by the shaded regions, high-confidence “old” decisions are rarely made to
lures but are frequently made to targets (thus, high-confidence accuracy
should be high). (b) Continuous confidence-accuracy relationship
predicted by the signal detection model depicted on the left (with d′ = 2
and confidence criteria placed -.5, .5, 1, 1.5, and 2 standard deviations
away from the mean of the lure distribution)
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confidence and accuracy. Figure 3b provides an example of
what the model depicted in Fig. 3a naturally predicts. The
predicted confidence-accuracy relationship is flat for “new”
decisions (reflecting the fact that there is no diagnostic signal
below the threshold) and is a step-function for “old” decisions.

2-high-threshold theory Like HTT, 2-high-threshold theory
(2-HTT) assumes that only targets can exceed the threshold
required to achieve the detect-old state, thereby generating a
signal that is perfectly diagnostic of the item’s status as a target
(Macmillan & Creelman, 2005). However, unlike HTT, 2-
HTT assumes a second high threshold, one that can be
exceeded only by lures, thereby giving rise to the “detect-
new” state (Fig. 4a). Because only lures can exceed this
threshold, the detect-new state is perfectly diagnostic of the
item’s status as a lure. Thus, the predicted confidence-
accuracy relationship for lures is the mirror-image of the pre-
dicted confidence-accuracy relationship for targets (Fig. 4b).
That is, for both “old” and “new” decisions, 2-HTT naturally
predicts a step-function relationship consisting of high accu-
racy for decisions made with the highest level of confidence,
and low accuracy otherwise.

Low-threshold theory Finally, low-threshold theory (LTT) is
similar to HTT except that it assumes that lures can also some-
times incorrectly exceed the (low) detect-old threshold (Luce,
1963). Note that this assumption differs from the 2-HTT assump-
tion that lures can correctly exceed the high detect-new threshold.
LTT has enjoyed a recent resurgence (e.g., Kellen, Erdfelder,
Malmberg, Dubé, & Criss, 2016; McAdoo & Gronlund, 2019;
Starns & Ma, 2018), and for good reason. First, it can provide a
good fit to even apparently curvilinear ROC data. And second,
like SDT, but unlike HTT and 2-HTT, it has the advantage of

assuming that false alarms reflect consciously experienced mem-
ory signals, in agreement with the widely held view that false
memories and true memories are subjectively indistinguishable
(e.g., Bernstein & Loftus, 2009).

In LTT, beyond the information about whether a test item
is in the detect state or the non-detect state, there is no diag-
nostic information available. If participants spread their con-
fidence ratings over 4-5-6 when in the detect state and over 1-
2-3 when in the non-detect state, the confidence-accuracy re-
lationship would be flat for both “old” and “new” decisions
(as in Fig. 3B for “new” decisions). Thus, LTT naturally pre-
dicts a confidence-accuracy pattern that is even farther re-
moved from the empirical data than HTT.

Mapping relationships between discrete threshold
states and continuous ratings

Although none of the threshold models reviewed above inher-
ently explains the continuous confidence-accuracy relationship,
they can all accommodate the data by assuming specificmapping
relationships between discrete states and the confidence rating
scale. We use HTT to illustrate this point, but the same idea
applies to each of the threshold models considered above.

As before, assume that 60% of the targets give rise to the
detect-old state, whereas 40% of targets and 100% of lures fall
into the non-detect state. Further assume that instead of
responding with high confidence when in the detect-old state,
participants do so with a probability of only .60 and choose
ratings of 5, 4, 3, 2, or 1 with continuously declining proba-
bilities (.20, .10, .05, .04, and .01, respectively) and that when
in the non-detect state, participants choose confidence ratings
of 6 through 1 with the mirror image of those probabilities
(namely, .01, .04, .05, .10, .20, and .60, respectively). Thus,

Fig. 4 (a) Depiction of the 2-high-threshold-theory (2-HTT) model,
where p represents both the probability that a target will enter the
detect-old state and the probability that a lure will enter the detect-new
state, and g represents the probability that an item in the non-detect state is
guessed to be old. (b) The relationship between confidence and accuracy

predicted by the model shown in panel A assuming that (1) p = .60, with
confidence = 6 in the “detect-old” state and confidence = 1 in the “detect-
new” state, and (2) g = .50, with responses spread evenly across the
confidence scale in the “non-detect” state
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even when in the detect-old state, the model must assume that
participants sometimes declare the item to be “new” with
some degree of confidence (1-2-3). These are clearly non-
trivial assumptions that, in our view, themselves require ex-
planation. Nevertheless, by adopting hypothetical mapping
relationships like these, HTT can account for a continuous
confidence-accuracy relationship, as illustrated in Fig. 5.
With similar assumptions about mapping relationships, 2-
HTT and LTT can also accommodate the continuous relation-
ship between confidence and accuracy for both “old” and
“new” decisions. However, 2-HTT can do so without having
to assume that the mapping relationships extend beyond a
natural response category (e.g., in the “detect old” state, only
ratings of 4-5-6 must be assumed).

What gives rise to the hypothesized mapping relationships
like these? As noted earlier, one possibility is that instructions
to participants often stipulate that the ratings should be spread
across the confidence scale. Indeed, the mere fact that a 6-point
confidence scale has been thrust upon the participantmight create
an implicit demand to use all available ratings. Given explicit or
implicit demand characteristics like these, participants may not
use the confidence rating scale in accordance with the underlying
memory signals they experience. We tested that idea by manip-
ulating demand characteristics across conditions.

Method

Participants

In total, we recruited 48 participants (75% female, 25% male)
through the UC SanDiego SONA portal whowere asked to read
and sign a consent form before proceeding with the study. The
SONA portal is an undergraduate research portal that allows
students taking psychology classes at the university to receive

class credit in exchange for completing a psychology
experiment.

Materials

The lists were created using words drawn from an online data-
base (Nelson, McEvoy, & Schreiber, 1998). The selection
criteria consisted of nouns with frequency scores that fall be-
tween 100 and 1,000. The 383 words that satisfied these criteria
constituted theword pool used to create the study list of 72words
and test lists consisting of those 72 words plus 72 additional
words drawn from the word pool that served as lures. A different
set of 144 words was randomly drawn from the word pool for
each participant. In addition, we created a short practice study list
and test list consisting of the following words:

Study list: dog, cat, snow shovel, mountain, car, radio
Test list: dog, penguin, snow shovel, valley, car,
television

Design

In Experiment 1, participants were randomly assigned to one of
two conditions that differed only in the instructions presented
after the presentation of the list and just prior to the recognition
test: (1) the Demand condition (16 participants) consisted of
instructions to spread ratings across the confidence scale, and
(2) the No-Demand condition (16 participants) consisted of in-
structions to use the confidence scale as desired. In Experiment 2,
a third condition (similar to the No-Demand instruction condi-
tion) was implemented to further reduce any remaining demand
characteristics that theNo-Demand condition failed to remove. In
this Free condition (16 participants), the instructions explicitly
stated that the confidence scale should be used without regard to
what the experimentermight want. Although theFree instruction
condition was a second experiment, we report it together with
Experiment 1.

Procedure

Participants were asked to read a brief introduction to the
study, with a paragraph describing the purpose of the study,
namely, to test models of recognition memory. After complet-
ing the short practice test, all participants studied a list of 72
words presented at a rate of one word per 3 s. For the subse-
quent recognition test, the 72 targets from the list and 72 lures
were randomly intermixed and presented one at a time for an
old/new decision. After each old/new decision, participants
provided a confidence rating using a 1-to-6 scale, with 1
representing a high-confidence “New” decision and 6
representing a high-confidence “Old” decision.

Fig. 5 Confidence-accuracy relationship predicted by the high-threshold
theory (HTT) after adding specific assumptions about the mapping
relationship between the memory state and confidence ratings
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Before taking the test, those in the Demand condition were
instructed to spread their ratings more or less evenly across the
scale (a common instruction). Those in the No-Demand con-
dition were instructed to use the confidence scale as they
pleased. In an effort to eliminate any ambiguity, they were
specifically told that they did not need to spread their ratings
across the scale. Those in the Free condition (Experiment 2)
were additionally told that the experimenters: “have no expec-
tation or preference whatsoever” and would: “simply like to
know” how the participant would personally prefer to use the
confidence scale. The instructions that were common across
experimental conditions were presented on the screen in black
(non-bold) font against a white background, whereas the crit-
ical instructions (which differed across conditions) were pre-
sented on the screen in bold and in blue. The experimenter was

present and stressed the importance of reading all the instruc-
tions, additionally emphasizing the importance of the blue text
because it provides information about their response strategy.
The experimenter also asked if there were any questions be-
fore moving on to the next phase.

Results

Confidence-accuracy analyses For each individual participant,
we computed accuracy (percent correct) separately for “Old”
and “New” decisions and, within those decision categories,
separately for each level of confidence (Mickes, 2015). The
results of this analysis are shown in Fig. 6, and it is clear that
there is a continuous confidence-accuracy relationship for
both “old” and “new” decisions. Moreover, and critically,
the trends do not differ in any appreciable way across the three
instructional conditions.

To more precisely quantify these apparent continuous trends,
we next computed slopes across the three levels of confidence
within each decision category. More specifically, for each partic-
ipant, we separately computed a “new” response slope (based on
their accuracy scores over confidence ratings of 1–3) and an
“old” response slope (based on their accuracy scores over confi-
dence ratings of 4–6). The function fit to the “new” decisionswas
bai ¼ p1 ai þ p2, wherebai represents predicted accuracy for con-
fidence rating i, ai represents the observed accuracy, p1 and p2
represent the slope and intercept, respectively, and i ranged from

Fig. 6 Confidence accuracy relationships for the Demand and No-
Demand conditions of Experiment 1 and for the Free condition of
Experiment 2. Accuracy for "Old" decisions is equal to HRc / (HRc +
FARc), where the subscript c refers to a particular level of confidence. An
analogous accuracy score for "New" decisions is based on the correct
rejection rate (CR) and the miss rate (MR) and is equal to CRc / (CRc +
MRc). For the equal base-rate situation used here (i.e., an equal number of
targets and lures), these equations represent the posterior probability of
being correct. Error bars represent standard errors

Fig. 7 Average “new” and “old” slopes over all participants for the
Demand, No-Demand and Free conditions. For the “new” responses,
the slopes were significantly less than 0 in all three conditions: t(15) = -
4.35, p = 0.0006, Cohen’s d = -1.09, t(15)= -3.20, p= 0.0059, Cohen’s d =
-0.80, and t(14) = -3.90, p = 0.0016, Cohen’s d = -0.98, for the Demand,
No-Demand, and Free conditions, respectively. For the “old” decisions
(ratings between 4–6), the slopes were significantly positive in all three
conditions, t(15)=12.24, p < 0.001, d = 3.06, t(15)=8.98, p < 0.0001, d
=2.25, and t(14) = 8.35, p < 0.0001, d = 2.09, for the Demand, No-
Demand, and Free conditions, respectively
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1 to 3. The same function was fit to the accuracy data for “old”
decisions except i ranged from 4 to 6.

Figure 7 shows the average “new” and “old” slopes over all
participants within their respective conditions (excluding one
participant in the Free condition who only gave 1 and 6 rat-
ings, making it impossible to compute a slope). The results
clearly indicate that as confidence increases for “new” and
“old” decisions, so does accuracy. This is shown by the fact
that the slopes for old decisions are all positive (accuracy
increases with increasing confidence from 4–6 on the scale),
and the slopes for new decisions are all negative (accuracy
decreases with decreasing confidence, i.e. as the numerical
scale increases from 1–3).

The results of the slope analysis are consistent with SDT
but are also consistent with threshold models that predict a
dichotomous step-function relationship between confidence
and accuracy (the prediction made by HTT for “old” decisions
and by 2-HTT for both “old” and “new” decisions). Therefore,
in addition to fitting a two-parameter straight line to the

confidence-accuracy data from each participant, we also fit a
two-parameter step function. We did so separately for “new”
decisions and “old” decisions. For “new” decisions, the di-
chotomous function was bai ¼ p1 ai if i = 1 and bai ¼ p2 ai if
i = 2 or 3, where bai represents predicted accuracy for confi-
dence rating i, ai represents observed accuracy, and p1 and p2
represent free parameters. For “old” decisions, the dichoto-
mous function was bai ¼ p1 ai if i = 6 and bai ¼ p2 ai if i = 4
or 5. Both functions allow for high-confidence decisions to
have higher accuracy than for decisions made with lower con-
fidence (which are theoretically equal except for random
error).

The linear and dichotomous fits each yielded a residual
sum of squares (RSS), and we computed a difference between
them (RSSlinear − RSSdichotomous). Thus, positive values would
support a continuous detection view, whereas negative values
would support the discrete-state 2-HTT model. As shown in
Fig. 8, in all three conditions, and for both “old” and “new”
decisions, the linear function provided a numerically better fit.

Fig. 8 Difference in RSS (where ΔRSS = RSSlinear - RSSdichotomous) for
two-parameter least-squares fits to confidence-accuracy data (linear –
dichotomous) for “new” decisions (left column) and “old” decisions
(right column). Positive values indicate a better fit for the linear
function, whereas negative values indicate a better fit for the
dichotomous function. The mean ΔRSS score was greater than zero for
six out of six comparisons, p = .031 (a result that should be interpreted
cautiously as we did not attempt to adjust for possible differences in
model flexibility). Of greater relevance, according to independent-
sample t-tests, for both “new” decisions and “old” decisions, none of

the pairwise comparisons of the ΔRSS distributions (e.g., Demand vs.
No Demand for “New” decisions) approached significance (obtained p-
values ranged from .137 to .909). To increase power, we collapsed the
data over “old” and “new” decisions and performed three pairwise
comparisons (e.g., Demand vs. No Demand for “old” and “new”
decisions combined). None of three comparisons approached
significance (obtained p-values ranged from .154 to .811). Thus, any
difference that might exist across conditions is likely too small to
appreciably affect the confidence-accuracy relationship
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Moreover, the results were not measurably affected by the
removal of demand characteristics for either “new” or “old”
decisions.

General discussion

The main purpose of the present investigation was to measure
the confidence-accuracy relationship at the level of the indi-
vidual participant, both in the presence of a demand to spread
responses across the rating scale and in the absence of such a
demand. A continuous confidence-accuracy relationship for
both “old” and “new” decisions, the pattern inherently predict-
ed by SDT, was observed regardless of the instructions. In
fact, the results were essentially identical whether participants
were explicitly instructed to spread their responses evenly
across the scale or were instead emphatically encouraged to
use the scale as they see fit. We interpret these findings as
evidence that participants used the rating scale to gauge the
strength of an underlying diagnostic memory signal, not be-
cause of demand characteristics.

An alternative explanation for ad hoc mapping relation-
ships in threshold models is sequential dependencies, where
a rating given to one test item tends to be repeated for the next
test item (Bröder et al., 2013). However, although there is little
doubt that sequential dependencies exist, the continuous
confidence-accuracy relationship is almost certainly not the
result of them. In recent years, it has become abundantly clear
that the relationship between confidence and accuracy is in-
variably strong and continuous even in studies in which only
one response is collected per participant, such as in a typical
study of eyewitness identification (Wixted & Wells, 2017).
This is true even of eyewitnesses tested in the real world
(Wixted, Mickes, Dunn, Clark, & Wells, 2016). Obviously,
no sequential dependencies exist when participants make only
a single recognition memory decision.

Another possible source of the hypothesized mapping re-
lationships is that the confidence scale itself might introduce
scale biases (e.g., Bröder et al., 2013). For example, the word-
ing associated with the confidence bins may encourage or
discourage participants from using extreme responses.
However, across a number of recent studies, it is striking
how consistently the continuous confidence-accuracy rela-
tionship emerges over an extremely wide range of both verbal
and quantitative scales (e.g., Dodson & Dobolyi, 2015;
Weber, Brewer, & Margitich, 2008). For example, recently,
Tekin and Roediger (2017) tested 4-, 5-, 20-, and 100-point
scales and found that the different scales yielded similar
(continuous) confidence-accuracy plots. In their words: “The
scales seem convertible from one to the other, and choice of
scale range probably does not affect research into the relation-
ship between confidence and accuracy” (p. 2).

In summary, with regard to explaining confidence in rec-
ognition memory decisions, the evidence weighs against
threshold models that assume demand characteristics, sequen-
tial dependencies, and/or scale biases. Thus, from the perspec-
tive of threshold models, we still have no idea what the ad hoc
mapping relationships actually reflect. Until we do, it cannot
be reasonably argued that, for confidence-based data (either
ROC data or the confidence-accuracy relationship we focused
on here), threshold models and signal detection models offer
equivalent accounts merely because they both fit the data ap-
proximately equally well. In our view, that perspective loses
sight of the purpose of models, which is to increase our un-
derstanding of behavioral phenomena of interest. For the
models under consideration here, only signal detection theory
helps us to understand the continuous relationship between
confidence and accuracy.

Open Practices Statement The data and materials for the ex-
periments reported here are available at the Open Science
Framework (https://osf.io/53vhq/); none of the experiments
was preregistered.
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