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Abstract 

Efforts to increase replication rates in psychology generally consist of recommended 

improvements to methodology, such as increasing sample sizes to increase power 

and using less flexible statistical analyses. However, little attention has been paid to 

how the prior odds (R) that a tested effect is true affect the probability that a 

significant result will replicate. The lower R is, the less likely a published result will 

replicate even if power is high. It follows that if R is lower in one set of studies than 

in another, then all else being equal, published results will be less replicable in the 

set with lower R. We illustrate this approach by analyzing data from the social 

psychology and cognitive psychology studies that were replicated as part of the 

Open Science Collaboration (2015). We find that R is lower for the social psychology 

studies than for the cognitive psychology studies, which might explain the difference 

in replication rates. This difference may reflect the degree to which the two fields 

value risky, but potentially groundbreaking, research. We show that if a field prefers 

risky research, then in order to achieve replication rates comparable to fields that 

prefer less risky research, it needs to either use an especially low alpha level and/or 

conduct experiments that have especially high power.  
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The Prior Odds of Testing a True Effect in Cognitive and Social Psychology  

In years gone by, it was often assumed that if a low-powered (e.g., small-n) 

experiment yielded a significant result, then not only was the effect probably real, its 

effect size was probably large as well. After all, how would the effect have been 

detected if that were not the case? If anything, low-powered studies reporting 

significant effects once seemed like a good thing, not a bad thing. In recent years, it 

has become apparent that there is a problem with this line of thinking. As it turns 

out, if a field typically runs low-powered experiments, the significant effects 

reported in its scientific journals will often be false positives, not real effects with 

large effect sizes (Button et al., 2013). 

The probability that a significant effect is real is known as the positive 

predictive value (PPV). Button et al. (2013) pointed out that the equation specifying 

the relationship between PPV and power is: 

PPV = [(1 – β) × R] ⁄ [(1− β) × R + α]   (1) 

where 1 − β represents power, α represents the Type I error rate (usually .05), and R 

represents the pre-study odds (i.e., the odds that real effects are investigated by the 

scientific field in question). The potential importance of R – that is, the potential 

importance of the base rate of tested effects with non-zero effect-sizes among the 

totality of effects subjected to empirical investigation in a given scientific field – is 

the main focus of our article.  

Button et al. (2013) showed that a significant effect is more likely to be real if 

it was obtained with a high-powered study than with a low-powered study. All else 

being equal, if Field A runs high-powered studies and Field B runs low-powered 
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studies, then significant effects from Field A will be more likely to replicate than 

significant effects from Field B (which is to say that PPV will be higher for Field A 

than Field B). In their calculations, Button et al. held R constant to illustrate the 

point that power affects PPV. However, others have noted the importance of 

differing prior odds (e.g., Overall, 1969; Lakens & Evers, 2014). 

R matters too 

It is well known in the medical literature that base rates play a critical role in 

the likelihood of a positive test result actually indicating a true positive result as 

opposed to a false positive result (Gigerenzer, 2015; Hoffrage & Gigerenzer, 1998).  

Consider a disease so rare that for every one person who has the disease, 100,000 

do not, and assume a test so diagnostic of the disease that it is correct 99.99% of the 

time (true positive rate = .9999, false positive rate = .0001). What are the odds that a 

person who tests positive actually has the disease? The answer is provided by 

Bayes' rule, which, in odds form, is given by 

posterior odds = prior odds × likelihood ratio 

In this example, the prior odds are 1 / 100,000, and the likelihood ratio is the true 

positive rate divided by the false positive rate, or .9999 / .0001. Multiplying the 

prior odds by the likelihood ratio yields a posterior odds of ~.1. In other words, 

despite the test being incredibly diagnostic, a positive test result means that there is 

only a one in ten chance that the disease is actually present. Expressed as a 

probability, PPV = .1 / (.1 + 1) = .09. 

 What if, instead of having no a priori reason to believe that the rare disease 

was present, the next tested individual was already showing signs of the disease 
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(e.g., a distinctive skin-coloring pattern)? Imagine that prior research has shown 

that among people with that symptom, the odds that they have the disease are 

50/50. Under those conditions, the prior odds are even, in which case Bayes' rule 

indicates that the posterior odds for a positive test result would now equal 9999-to-

1 (i.e., PPV = .9999). 

This example illustrates the fact that when there is a good reason to believe 

that someone actually has the disease before running the test, a positive test result 

can strongly imply that a person has the disease (PPV is high). By contrast, when 

there is no reason to believe that someone actually has the disease before running 

the test, a positive test result – even from a highly diagnostic test – may strongly 

imply that a person does not have the disease (PPV is low). Although such a test will 

update the prior odds from being extremely low to being much higher than they 

were before, the posterior odds (and PPV) can still weigh heavily against the disease 

being present. 

 Just as the prior odds that someone has a disease affect the meaning of a 

positive test, the prior odds that an experiment is testing a true effect (i.e., R) should 

influence our belief in that effect following a significant result. In the above example, 

even an extremely diagnostic test did not strongly imply a true positive result when 

the test was run without any prior reason for conducting the test in the first place. 

As strong as the research methodology in psychology may be, no one would argue 

that psychology experiments are anywhere near 99.99% diagnostic of a true effect 

(correctly detecting true effects 99.99% of the time and generating false positives 

0.01% of the time). It is therefore important to consider the factors that determine 
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which specific hypotheses among the entire population of hypotheses scientists 

choose to test when they conduct an experiment. The fewer signs in advance of the 

experiment that the effect might be true, the lower R is likely to be (just as in the 

medical example above).  

R may differ across types of studies 

To investigate the potential role of R, we compared two sets of studies from 

different subfields of experimental psychology – cognitive psychology and social 

psychology – which the Open Science Collaboration (2015) project found to have 

different replication rates (and, therefore, different PPVs) . They conducted 

replications of 100 quasi-randomly sampled studies published in three psychology 

journals. Of the 100 replicated studies, 57 were from social psychology and 43 were 

from cognitive psychology1. They reported that 50% of findings in cognitive 

psychology and 25% of findings in social psychology replicated at the p < .05 level. 

This difference in replication rates was significant, z = 2.49, p = .013. A larger 

percentage of the originally reported effects were likely real because not every real 

effect will be detected when studies are replicated, and the miss rate likely exceeds 

the false positive rate. One way to estimate how many of the reported effects were 

real is to consider how many findings yielded a replicated effect in the same 

direction as the original study. The proportion of replicated effects that were in the 

same direction as the original effect was significantly higher for cognitive 

psychology (.905) than for social psychology (.745), z = 2.00, p = .046. Because this 

                                                        
1 Three studies were excluded from all analyses (two in social and one in cognitive). In all three cases, 
the p-values in the original papers were greater than 0.10 and were interpreted as an effect not being 
present in the original publications.  
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was a relatively small-n study, it seems fair to say that this statistical comparison 

does not provide strong evidence for a true difference between the two subfields. 

Nevertheless, we use these point estimates to illustrate how R might help to account 

for the differing replication rates of the cognitive and social psychology studies 

included in the Open Science Collaboration. 

Using binary logic for the time being, we assume that the observed 

proportion of studies yielding effects in the same direction, ω, is equal to the 

proportion of true effects, PPV, plus half of the remaining 1 – PPV non-effects, which 

would be expected to yield an effect in the same direction as the original study 50% 

of the time due to chance. In other words, ω ≈ PPV + .50(1 – PPV). Solving for PPV 

yields PPV ≈ 2ω – 1 (see Box 1 for more details). For cognitive psychology, ω = .905, 

so PPV = 2(.905) – 1 = .81. For social psychology, ω = .745, so PPV = 2(.745) – 1 = .49. 

In other words, using this measure of the proportion of "real" effects originally 

reported as being significant, 81% of reported cognitive psychology effects were 

real, whereas only 49% of reported social psychology effects were real. Why the 

difference?  

As noted in the Open Science Collaboration (2015) article, "[r]eproducibility 

may vary by subdiscipline in psychology because of differing practices. For example, 

within-subjects designs are more common in cognitive than social psychology, and 

these designs often have greater power to detect effects with the same number of 

participants" (p. aac4716-2). Their analysis focuses on experimental design issues 

(and resulting differences in statistical power) to explain the difference in 

reproducibility rates between cognitive and social psychology studies. Such an 
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interpretation carries with it the implication that R is the same for both sets of 

studies and that increasing statistical power in social psychology would have 

yielded replication rates comparable to those in cognitive psychology. We next 

consider whether a difference in statistical power in the cognitive and social 

psychology studies included in the Open Science Collaboration is sufficient to 

explain that outcome or whether a difference in R – the odds that tested effects are 

real – is also needed to explain the difference. In this analysis, we treat the point 

estimates from the Open Science Collaboration as being the true values even though 

there is likely to be error in those estimates. 

Can a difference in power explain the difference in PPV? 

According to Equation 1, PPV is affected by three variables: power (1- β), 

base rate or prior odds (R), and alpha level (α). Both social and cognitive psychology 

generally follow the same p < .05 convention for their alpha level, so the difference 

in that variable likely does not explain the difference in PPV. This leaves us with two 

other variables that might explain differences in the percentage of claimed 

discoveries that actually are true: power (1 - β) and the base-rate of true effects (R). 

If either (or both) of these variables is lower in social psychology, the percentage of 

claimed discoveries that are actually true (PPV) would also be lower. The usual 

assumption is that studies in social psychology are underpowered compared to 

cognitive psychology, thereby explaining the lower replication rate. As discussed 

above, Equation 1 predicts that low power alone is theoretically sufficient to have 

that effect. However, another possibility is that the cognitive and social psychology 

studies differed in R, not power. Assume for the sake of argument that power was 
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actually the same for the two sets of studies and, for both, was equal to 80%. With 

power specified at 80% and α set to .05 for both, and with PPV set to .49 for social 

psychology and .81 for cognitive psychology (based on the analysis presented 

earlier), we can use Equation 1 to solve for R, separately for the cognitive and social 

psychology studies. Doing so yields an estimate of 0.06 (R ≈ 1 / 16) for social 

psychology and 0.27 (R ≈ 1 / 4) for cognitive psychology. That is, if these point 

estimates from the Open Science Collaboration are representative of the field at 

large, then in cognitive psychology, for every real effect that is subjected to 

empirical test, there are about 4 non-effects that are subjected to empirical test. For 

social psychology, for every real effect that is subjected to empirical test, there are 

about 16 non-effects that are subjected to empirical test. Keep in mind that these 

estimates of R pertain to the number of true effects out of the totality of effects that 

are subjected to empirical investigation (prior odds), not to the number of true 

effects in the published literature out of the totality of published effects (i.e., not to 

posterior odds or to PPV).  

Although we equated power at 80% in the example above, the underlying 

base rate of true effects would be lower for the social psychology studies than for 

the cognitive psychology studies for any level of (equated) power we might choose. 

Thus, although the observed difference in replication rates for the cognitive and 

social psychology studies can be accounted for by assuming that the original studies 

differed in power (which is the usual assumption), those differences can also be 

accounted for by assuming that the studies were equated in terms of power but 

differed in the probability of true effects tested.  
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How can we determine whether one explanation actually accounts for the 

observed difference in the replication rates (namely, differential power or 

differential R) or whether both explanations play a role? Some insight into the 

question of whether or not the originally published cognitive and social psychology 

studies differed in power can be obtained by examining the p-curves for those 

studies, separately for cognitive and social psychology. Simonsohn, Nelson, and 

Simmons (2014) performed simulations for various levels of power and showed 

what the distribution of p-values look like for 50% and 80% power. The 

distributions will be right-skewed in both cases, but as power increases, the 

proportion of significant p-values less than .01 increases. In their simulations, with 

50% power, about 50% of the significant p-values were less than .01. With 80% 

power, about 70% of the significant p-values were less than .01. Simonsohn et al. 

(2014) found that these patterns held true for a wide range of effect sizes and 

sample sizes. Thus, for example, the p-curve for 50% power was similar whether 

Cohen’s d = 0.64 and n = 20 or Cohen’s d = 0.28 and n = 100. Moreover, they 

concluded that p-curve is robust to heterogeneity of effect size (see “Supplement 2. 

Robustness to heterogeneity of effect size” in Simonsohn et al., 2014), however, 

others disagree with that claim (Schimmack & Brunner, 2017). Although the issue 

remains unresolved, we used p-curves to obtain tentative estimates of power for 

illustrative purposes. 

Figure 1 shows the p-curves (distributions of significant p-values) for the 

original studies published in cognitive and social psychology reported by the Open 

Science Collaboration (2015). These p-curves are consistent with the widely-held 



Running head: PRIOR ODDS IN COGNITIVE AND SOCIAL PSYCHOLOGY 11 

view that social psychology studies have lower power than cognitive psychology 

studies. More specifically, the p-curve for the originally published cognitive 

psychology studies in the Open Science Collaboration shown here in Figure 1A 

resembles the hypothetical p-curves associated with 80% power in Figure 1 of 

Simonsohn et al. (2014). The p-curve for the originally published social psychology 

studies in the Open Science Collaboration shown here in Figure 1B resembles the 

hypothetical p-curves associated with 50% power in Figure 1 of Simonsohn et al. 

(2014). Whether or not these exact power estimates are correct, the p-curve data 

are consistent with the prevailing view that power was lower in the original social 

psychology studies than in the original cognitive psychology studies.  

Although a difference in power may provide part of the explanation for the 

difference in replication rates, it does not seem to explain the entire difference. If we 

set PPV = .49, α = .05, and 1 – β (i.e., power) = .50, for social psychology and we set 

the corresponding values for cognitive psychology to PPV = .81, α = .05, and 1 – β 

= .80, we can use Equation 1 to solve for R (separately for cognitive and social 

psychology). When rearranged to solve for R, Equation 1 becomes: 

   R = αPPV / [(1 – β) × (1− PPV)]    (2)  

Using Equation 2 and the values specified above, R works out to be 0.24 (odds = 1 to 

~4) for cognitive psychology and 0.10 (odds = 1 to 10) for social psychology. In 

other words, according to this analysis, even allowing for the fact that the cognitive 

and social psychology studies differed substantially in statistical power (50% for 

social vs. 80% for cognitive in this example), they also differed in the likelihood that 

a tested effect is real. Although this analysis is based on simplified binary logic 
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(according to which effect sizes are real or not) and assumes these point estimates 

for R and power are the true values, essentially the same conclusion applies under 

the more realistic assumption that effect sizes are continuously distributed (see Box 

2).  

An alternative way of making this same point is to assume that R was actually 

the same for the cognitive and social psychology studies and then to consider just 

how much lower power would have to be for the social psychology studies for the 

two sets of studies to yield PPV values of .81 and .49, respectively. For this analysis, 

we rearrange Equation 1 again, this time solving for power: 

(1 – β) = αPPV / [R × (1− PPV)]    (3)  

Once again, we set PPV in Equation 3 to .81 for the cognitive psychology 

studies and .49 for the social psychology studies, with alpha set to .05 for both fields. 

For a given value of R (which is constrained to be equal for cognitive and social 

psychology), we can then estimate power. For example, if R = 0.266 for both, then 

Equation 3 indicates that power for the cognitive psychology studies was .80, 

whereas power for the social psychology studies was only .18. Did power actually 

differ between the cognitive and social psychology studies to that great of an extent? 

Perhaps, but then one would need to explain why the p-curve for social psychology 

(in Figure 1) is closer to the 50% power p-curve than the 25% power p-curve in the 

Simonsohn et al. (2014) simulations. 

Figure 2A shows a generalization of this example. More specifically, the 

figure shows what statistical power would have to have been in social psychology 

for any level of power in cognitive psychology under the assumption that the 
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underlying base rates are the same in the two sets of studies. If the cognitive 

psychology studies had 100% power (which occurs if R = 0.213 according to 

Equation 3), then, assuming an equivalent R, Equation 3 indicates that power for the 

social psychology studies would be only 23%. In other words, 23% would be the 

maximum power that the social psychology studies could have had if the two sets of 

studies were equated with respect to R. As far as we can tell, no one has argued (and 

the p-curve analysis does not suggest) that the power differential between the 

cognitive and social psychology studies was that extreme. Instead, it would seem 

more reasonable to assume that although power may differ, R differed as well. 

Similarly, Figure 2B shows that R would have to be vastly lower in social psychology 

than cognitive psychology in order for the two sets of studies to have been equated 

with respect to power. Given the large effects that one would otherwise have to 

assume, it seems reasonable to assume that both factors (lower power and lower R) 

played a role in the lower rate of replication observed for social psychology. We 

cannot conclusively state that the differences in R between cognitive and social 

psychology that were observed in the Open Science Collaboration (2015) dataset 

will generalize more broadly to those subfields of psychology, but it seems 

reasonable to suppose that they might. 

Factors Affecting R 

What factors determine the prior odds that a tested hypothesis is true? Our 

assumption is that established knowledge is the key consideration, just as it is in the 

medical domain when considering the prior odds that a disease is present. Testing a 

hypothesis based on established knowledge – acquired either from scientific 
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research or from common experience (e.g., going without sleep makes you tired) – 

increases R compared to relying on less dependable sources of knowledge, such as 

idiosyncratic hunches or theories grounded in a scientist's own personal experience. 

To illustrate an extreme example of low-R research, imagine we were 

walking around the grocery store one afternoon and eyed some balloons on our way 

to the checkout line. We decide to buy them and randomly place them outside the 

doors of some classrooms and not others based on a novel theory that doing so 

would boost morale and help to address the problem of scholastic 

underachievement. This theory might be based on the experimenter's own 

childhood experiences with the effect of ambient balloons on his or her motivation 

to excel in math. We then measure student learning in the classrooms with and 

without balloons at the entranceways. Let’s suppose we even get a statistically 

significant difference (p < .05) between the learning scores in the two conditions. 

The danger with rushing to publish these surprising results and starting our new 

Balloon Brain business designed to harness the power of balloons in classrooms is 

that the prior odds of a hypothesis being true based on a theory generated in the 

way that the balloon idea was generated (i.e., an idea largely untethered to 

established knowledge) were low.  

The results of low-R research will be more surprising than the results of 

high-R research because, by definition, a result is surprising to the extent that it 

violates one’s priors. In the medical context, for example, if someone who is already 

showing signs of a rare disease (high prior odds) tests positive, that outcome would 

probably not be viewed as very surprising. By contrast, if someone who is showing 
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no signs of a rare disease (low prior odds) nevertheless tests positive, that outcome 

probably would be viewed as surprising. Conceivably, social psychology places 

higher value on surprising findings – that is, findings that reflect a greater departure 

from what is already known – than cognitive psychology (e.g., editors of social 

psychology journals might place greater weight on the surprisingness factor). All 

else being equal, a difference in preference along that dimension would lead to a 

difference in R between the two fields (lower for social psychology). In agreement 

with this line of reasoning, The Open Science Collaboration (2015) asked 

independent coders to rate how surprising and how exciting/important the findings 

reported in the original studies were using a 6-point scale2. When these two 

measures were averaged together, the original cognitive psychology studies were 

rated as being lower on surprising and exciting (mean = 3.04) than the original 

social psychology studies (mean = 3.33), t(110) = -2.25, p = .026.  

A difference in preference for more surprising vs. less surprising findings 

would not be an automatic indictment of either field. Indeed, there is an inherent 

tension between the degree to which a study would advance knowledge and the 

likelihood that a reported effect is replicable. Different fields may have different 

preferences for where they would like to operate on the R continuum. If R for a 

particular field is 0, the published literature would likely be very exciting to read 

(i.e., large apparent leaps in knowledge, such as people having ESP), but none of it 

would be true. At the other extreme, if R for a particular field is infinitely high, the 

published literature would all be true, but the results of most experiments might be 
                                                        
2 This analysis includes some additional studies that were coded but for which 
replications were not completed. 
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so pre-experimentally obvious as to be useless. Maximizing PPV solely by 

maximizing R would serve only to “…enshrine trivial, safe science” (Mayo & Morey, 

2017, p. 26). We can imagine pages full of findings reporting that people are hungry 

after missing a meal or that people are sleepy after staying up all night. Neither of 

these scenarios (R = 0 vs. R = ∞) would be ideal for advancing our understanding of 

the world. The ideal point on the R continuum lies somewhere in between, but 

specifying the optimal point is difficult even though it follows that increasing R 

increases replicability (see Miller & Ulrich, 2016).   

Implications 

In response to concerns regarding replication rates in experimental 

psychology, many methodological recommendations have been made, but they 

focus on factors that affect power rather than R. For example, Psychological Science 

now asks submitting authors “to explain why they believe that the sample sizes in 

the studies they report were appropriate” (Association for Psychological Science, 

2016). The Attitudes and Social Cognition section of Journal of Personality and Social 

Psychology now requires authors to include “a broad discussion on how the authors 

sought to maximize power” (American Psychological Association, 2017). 

Psychonomic Bulletin & Review now instructs submitting authors that, “It is 

important to address the issue of statistical power. . .Studies with low statistical 

power produce inherently ambiguous results because they often fail to replicate” 
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(Psychonomic Society, 2017). Equation 1 makes it clear why that is, but power is not 

the only factor that will affect replication rates.3 

 In addition to a growing understanding of the importance of power, the field 

is becoming increasingly aware of how the alpha level affects the likelihood of a 

false positive. For example, Lindsay (2015) suggested that studies where p is just 

barely below .05 should be regarded with more skepticism than is typically the case. 

Along the same lines, Benjamin et al. (2017) recently proposed that the standard for 

statistical significance for claims of new discoveries should be p < .005 rather than p 

< .05 in order to make published findings more replicable. These developments 

underscore the fact that, in addition to running studies with higher power, another 

way to increase PPV would be to lower the alpha level (Equation 1).  

  If our analysis is correct, then neither of these approaches, if applied non-

differentially, would do away with the difference in replicability for the cognitive 

and social psychology studies we analyzed. If R differs for the studies included in the 

Open Science Collaboration (2015), then even if power were set to 80% and alpha 

were set to .005, the cognitive psychology studies would still be more likely to 

replicate than social psychology studies. Given our prior estimate of R for the 

cognitive psychology studies, Equation 1 indicates that these standards would result 

in 97.7% of published cognitive psychology effects being true. For the social 

psychology studies, the result would be 93.9% being true (a result that could be 

achieved in cognitive psychology using an alpha level of .014). Therefore, if a field 

                                                        
3 Our analysis is based on the factors included in Equation 1 and is therefore predicated on the 
assumption that other factors that might affect replicability (e.g., differences in the frequency of p-
hacking) are equated across the two fields. 
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prefers to engage in riskier (low-R) research, either higher power or a lower alpha 

(or some combination of the two) would be needed in order to achieve the same 

PPV as a field that engages in less risky research.  

If, instead, the same methodological standards are applied to both fields (e.g., 

80% power and alpha of .005), and if both fields strive to achieve the same high PPV 

(i.e., to achieve the same posterior odds in Bayes’ rule), then R would need to be 

increased for the low-R discipline. One way to increase R would be to base new 

experiments more directly on knowledge derived from prior scientific research 

rather than testing hypotheses that move farther away from what is scientifically 

known. A change in focus like that would presumably happen only if editors of top 

journals in a high-risk (low-R) field placed slightly less emphasis than they usually 

do on the novelty of new findings (in which case scientists themselves might do the 

same). Low-R research is likely to be surprising and exciting (e.g., ESP is real), but 

unless it has differentially high power or a differentially low alpha level, it is likely to 

be less replicable than high-R research.  

 

Open Practices 

All analysis code has been made publicly available via the Open Science Framework 

and can be accessed at osf.io/qrykc. 
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In Detail Box 1 – Calculating PPV 

  PPV can be estimated by understanding the probability of different 

outcomes. H0 shows a distribution of effects that are not real. It is centered on zero 

because any effects are due purely to noise. Half of the time effects observed when 

H0 is true will be positive, and half of the time effects observed when H0 is true will 

be negative. The area 

shaded in the upper 

and lower tails of H0 

represent the Type I 

error rate. H1 shows 

two distributions of 

effects that are real, 

one for 50% power 

and the other for 80% 

power, where either 

50% or 80% of the 

distribution, 

respectively, exceeds 

the critical value of the test statistic. If a replication experiment has 50% power, the 

probability of a real effect going in the opposite direction as the original experiment 

(denoted as δ) is ~.02. If a replication experiment instead has 80% power, δ ≈ .003 

(a probability so small that it is hard to see in the figure). Thus, the full equation for 

ω is ω = (1-δ)PPV + .5(1-PPV) such that PPV = (ω - .5) / (.5 – δ). Because δ is likely 
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negligible for the replication studies, we rely on the simpler equation, PPV = 2ω – 1, 

as a close approximation. Johnson, Payne, Wang, Asher, and Mandal (2017) used a 

different approach to estimate PPV and obtained a similar estimate to the one 

obtained using our simple equation (see Supplementary Materials for more details). 

 For H1 the area in region I corresponds to the probability of getting a 

significant effect in the wrong direction if the effect is real. Clearly, it is extremely 

unlikely that a significant result reported in the original publications is in the wrong 

direction even when power is as low as 50%. Indeed, Gelman and Carlin (2014) 

showed that this kind of error (which they termed a "Type S error") becomes 

appreciable only when power drops well below 20%. We assume that even in the 

original studies, power was not well below 20%. If that assumption is correct, then 

significant Type S errors can be ignored in our analyses without appreciably 

affecting our estimates of PPV. The area in region II shows the probability of getting 

a nonsignificant effect in the wrong direction if an effect is real. The area in region III 

shows the probability of getting a nonsignificant result in the correct direction if an 

effect is real, and the area in region IV shows the probability of getting a significant 

result in the correct direction if an effect is real.  
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In Detail Box 2 – Effect sizes are continuously distributed  

The analysis presented in the main text is based on binary logic (i.e., it 

assumes that effects are either real or not), which is a convenient assumption for 

thinking through these issues but is also unrealistic. Undoubtedly, effect sizes are 

continuously distributed, beginning with an effect size of zero and increasing in 

continuous fashion to effect sizes that are much greater than zero. Thus, for example, 

if one assumes that some hypotheses have effect sizes of 0, it would seem odd to 

suppose that there are not other hypotheses with an effect size of 0.001, still others 

with an effect size of 0.002, and so on.  In this section, we consider the implications 

of the fact that effect size is likely a continuous variable. The main point we make in 

this section is that our conclusion about the prior odds of testing a real effect in 

cognitive vs. social psychology holds even if we assume that effect sizes are 

continuously distributed.  

 In some fields of research, such as in genome-wide association studies (e.g., 

Park et al., 2010), there are theoretical reasons to believe that effect sizes are 

exponentially distributed. If effect sizes happened to be exponentially distributed in 

psychology, then empirical effect sizes, which are measured with Gaussian error, 

would be distributed according to an ex-Gaussian (i.e., exponentially distributed 

effect sizes with Gaussian measurement error). Szucs and Ioannidis (2017) analyzed 

the distribution of published effect sizes from 3,801 recently published articles in 

psychology and cognitive neuroscience. From that dataset, we examined the 

distribution of significant effect sizes in psychology for values of Cohen’s d less than 

5.0 (a very small percentage of effects was larger than that). The adjacent figure 
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shows the results. The curve shows the maximum-likelihood fit of the 3-parameter 

ex-Gaussian distribution, which 

appears to provide a 

reasonable approximation to 

the large majority of effect sizes 

with d < 5. The mean of the 

exponential distribution is 

represented by τ, and the mean 

and standard deviation of the 

Gaussian component are μ and σ, respectively. The overall average effect size is 

equal to μ + τ, or 0.28 + 0.68 = 0.96 for these data. Because these are maximum-

likelihood estimates, the estimated average effect size of 0.96 is the same value one 

obtains by simply averaging the 5334 effect sizes.   

The next figure shows the frequency distributions of reported effect sizes for 

cognitive and social psychology studies from the Open Science Collaboration (2015) 

along with the best-fitting ex-Gaussian (fit using maximum likelihood estimation).  

The effect sizes reported in terms of r were converted to Cohen’s d for this analysis 

(Borenstein, Hedges, Higgins, & Rothstein, 2009). The data are quite variable, but 

the results are consistent with the notion that effect sizes are continuously 

distributed, more or less as an ex-Gaussian distribution. The distribution of 

published effect sizes for the original studies is almost certainly right shifted (i.e., 

published effect sizes are likely inflated relative to the true effect sizes). The 

replication distributions are not inflated, and they are consistent with an 
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exponential-like distribution of effect sizes (mode = effect size of 0, continuously 

increasing from there) with Gaussian error. 

 

The next figure shows the distribution of replication effect sizes plotted 

against the corresponding distribution of original effect sizes, separately for 

cognitive and social psychology experiments. The average effect size (i.e., μ + τ) for 

the cognitive psychology studies is larger than for the social psychology studies, and 

this is true of both the original (cognitive mean = 1.25, social mean = 0.77) and the 

replication studies (cognitive mean = 0.75, social mean = 0.34). Are these apparent 

differences in average effect size reliable? To find out, we first conducted null 

hypothesis tests on the effect-size data and then performed a Bayesian analysis on 
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the same data. For the original studies, the effect size was significantly larger for 

cognitive psychology than social psychology, t(92) = 3.90, p < .001. For the 

replication studies, the effect size was again significantly larger for cognitive 

psychology than social psychology, t(92) = 2.54, p  = .013. The overall decline in 

effect sizes from the original to the replication studies appears to be comparable for 

both fields. For the Bayesian analysis applied to the original data, we used a Cauchy 

uninformative prior (scale = 0.707), and the resulting Bayes factor was 130.0 (see 

Figure A1). For the replication data, we used a Gaussian informed prior (mean = 

1.253 - 0.774 = 0.479, sigma = 0.25), and the resulting Bayes factor was 14.5 (see 

Figure A2). Thus, we conclude that the average effect size for the cognitive 

psychology studies was larger than the average effect size for the social psychology 

studies.  
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The key point of this section is that if effect sizes are continuously distributed 

(e.g., according to an exponential with Gaussian measurement error), which we 

believe they likely are, then we would need to conceptualize R in terms of the 

proportion of tested effects that fall in a region close to zero. In that case, a field with 

a lower average effect size would have a higher proportion of tested effects that are 

of negligible effect size no matter how “negligible” is defined (such as Cohen’s d < 

0.10). Thus, whether effect sizes are conceptualized in discrete or continuous terms, 

R is lower for the social psychology studies than the cognitive psychology studies in 

the Open Science Collaboration (2015).  
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Figure 1. Distributions of p-values for studies selected to be replicated in the Open 
Science Collaboration (2015). Panel A shows the p-values from the original cognitive 
psychology studies, and panel B shows the p-values from the original social 
psychology studies. 
 

A. 

 

B. 

 

 
 



Running head: PRIOR ODDS IN COGNITIVE AND SOCIAL PSYCHOLOGY 30 

 
Figure 2.  The reason social psychology experiments were less likely to replicate in 
the Open Science Collaboration (2015) could be due to either a lower base rate of 
true effects (R) in social than cognitive psychology or lower power in social than 
cognitive psychology.  Panel A shows how much lower the power in social 
psychology would have to be than cognitive psychology in order for the prior odds 
of studying true effects to be equal. Panel B shows how much lower the prior odds of 
studying true effects would have to be in social relative to cognitive psychology for 
power to be equal. 
 
A. 
  

 

B. 
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Appendix 

 
Figure A1. Effect-size analysis (cognitive vs. social) for the original studies 
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Figure A2. Effect-size analysis (cognitive vs. social) for the replication studies 
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