
Running head: Making Sense of Sequential Lineups 1 

 

 

 

Making Sense of Sequential Lineups: An Experimental and Theoretical Analysis of Position 

Effects 

 

Brent M. Wilson, Kristin Donnelly, Nicholas J. S. Christenfeld, & John T. Wixted 

University of California, San Diego 

 

 

 

Author Note 

Brent M. Wilson, Department of Psychology, University of California, San Diego. Kristin 

Donnelly, Department of Psychology, University of California, San Diego. Nicholas 

Christenfeld, Department of Psychology, University of California, San Diego. John T. Wixted, 

Department of Psychology, University of California, San Diego. 

This work was supported by National Science Foundation grant SES-1456571 to John T. 

Wixted and by the Laura and John Arnold Foundation.  

We thank the editor (Simon Farrell) and three reviewers (Jeff Starns, Adam Osth, and 

Yonatan Goshen-Gottstein) for their insightful comments on our paper. 

Correspondence concerning this article should be addressed to Brent M. Wilson 

(b6wilson@ucsd.edu) or John T. Wixted (jwixted@ucsd.edu), Department of Psychology, 

University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 

mailto:b6wilson@ucsd.edu)
mailto:jwixted@ucsd.edu)


Running head: Making Sense of Sequential Lineups 2 

 
Abstract 

As part of a criminal investigation, the police often administer a recognition memory task known 

as a photo lineup. A typical 6-person photo lineup consists of one suspect (who may or may not 

be guilty) and five physically similar foils (all known to be innocent). The photos can be shown 

simultaneously (i.e., all at once) or sequentially (i.e., one at a time). Approximately 30% of U.S. 

police departments have moved to using the sequential lineup procedure over the last 30 years, 

yet its theoretical underpinnings remain poorly understood. A simple signal detection model 

makes several unexpected predictions about how the sequential lineup procedure should affect 

the ability of eyewitnesses to discriminate innocent from guilty suspects. For example, empirical 

discriminability (area under the receiver operating characteristic) should decrease as the position 

of the suspect in the lineup increases. In addition, under some conditions, a fair sequential lineup 

should not yield higher discriminability than a single-person (non-lineup) recognition test known 

as a showup. The results of two experiments reported here confirmed these predictions. 

Counterintuitively, even though empirical discriminability decreased as the suspect’s sequential 

position increased, a signal detection model fit to the data indicated that theoretical 

discriminability exhibited a small effect in the opposite direction (increasing with the sequential 

position of the suspect). The latter result is consistent with a diagnostic feature-detection theory 

of eyewitness identification. 

 

Keywords: Recognition Memory; Signal Detection Theory; ROC Analysis; Diagnostic Feature-

Detection Theory; Eyewitness Memory 
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Making Sense of Sequential Lineups: An Experimental and Theoretical Analysis of 

Position Effects 

 Nowadays, the most common eyewitness identification procedure in the United States is 

a photo lineup, which has largely replaced the live lineups the police once used. A photo lineup 

consists of a picture of one suspect (the person who the police believe may have committed the 

crime) plus several additional photos of physically similar people who are known to be innocent. 

The photos can be shown all at once – the traditional simultaneous lineup, developed by the 

police long ago – or one at a time – the newer sequential lineup, developed by experimental 

psychologists in 1985 (Lindsay & Wells, 1985). In lab-based studies of the sequential lineup, a 

stopping rule is typically used such that the first photo that is identified terminates the procedure.   

Researchers usually evaluate competing lineup formats using mock-crime laboratory 

experiments in which participants witness a staged crime and are later shown a photo lineup in 

which the perpetrator is either present or absent. A target-present lineup includes the perpetrator 

along with (usually 5) similar foils; a target-absent lineup is the same except that the perpetrator 

is replaced by another similar foil who serves as the designated innocent suspect. For decades, 

diagnostic accuracy was assessed using a statistic known as the diagnosticity ratio (DR), which is 

the hit rate (HR) divided by the false alarm rate (FAR). The HR is the proportion of target-

present lineups that resulted in a correct identification of the guilty suspect. For example, if 70% 

of target-present lineups resulted in a correct ID of the guilty suspect, 20% resulted in an 

incorrect ID of a foil, and 10% resulted in no ID, the HR would be .70. The FAR is the 

proportion of target-absent lineups that resulted in an incorrect identification of the innocent 

suspect. For example, if 6% of target-absent lineups resulted in an incorrect ID of the innocent 

suspect, 30% resulted in an incorrect ID of a foil, and 64% resulted in no ID, the FAR would 
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be .06.1  In the seminal study on this issue, Lindsay and Wells (1985) reported that for sequential 

lineup, HR = .50 and FAR = .17 (DRSEQ = .50 / .17 = 2.94), whereas for the simultaneous lineup, 

HR = .57 and FAR = .42 (DRSIM = .57 / .42 = 1.36). The higher DR for sequential lineups is the 

basis for what came to known as the “sequential superiority effect” (e.g., Steblay, Dysart, & 

Wells 2011).  

In recent years, it has become widely appreciated that the DR conflates discriminability 

(the ability of an eyewitness to discriminate innocent from guilty suspects) with response bias 

(the overall tendency to identify anyone from a lineup) (Gronlund, Wixted, & Mickes, 2014). 

Because it increases as responding becomes more conservative, a higher DR does not provide 

evidence that one procedure is superior to another. Using signal detection theory as a guide, 

researchers are now more likely to compare the diagnostic accuracy of competing lineup 

procedures by measuring the area under the receiver operating characteristic (ROC). The signal 

detection approach has also brought to light some unusual properties of the sequential lineup 

procedure that had previously gone unnoticed (Rotello & Chen, 2016). We pursue those unusual 

properties in some detail here, but we first briefly consider how signal detection theory is 

ordinarily applied to a (non-lineup) recognition memory task.  

Signal Detection Theory of Recognition Memory 

 Signal detection theory has been applied to old/new recognition memory since Egan’s 

(1958) seminal report more than half a century ago. A standard old/new memory test consists of 

targets (previously presented list items) randomly intermixed with foils (novel items), each 

presented for an individual “old/new” decision. Theoretically, the memory signal for a target is 

                                                 
1 If the innocent suspect is another randomly selected foil, the FAR can also be estimated by counting all 
identifications from target-absent lineups and then dividing by lineup size. In this example, the FAR would be (.06 
+ .30) / 6 = .06. 
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drawn from a Gaussian distribution with a relatively high mean, whereas the memory signal for 

the foil is drawn from a Gaussian distribution with a relatively low mean (Figure 1). The 

decision to either identify or reject the test item is made in relation to a decision criterion (c) 

placed somewhere on the memory strength axis. At one extreme, with the criterion placed far to 

the left (very liberal response bias), a participant would almost always respond “old,” in which 

case both the hit rate and the false alarm rate would be ~1. That is, all targets would be correctly 

classified as old, but all foils would be incorrectly classified as old. At the other extreme, with 

the criterion placed far to the right (very conservative response bias), a participant would almost 

always respond “new,” in which case both the hit rate and the false alarm rate would be ~0. That 

is, all targets would be incorrectly classified as new, and all foils would be correctly classified as 

new.     

 When conducted in the context of eyewitness identification, an old/new recognition test 

is called a showup. In a photo showup, the test item is either the person who committed the crime 

(a photo of the target) or an innocent suspect (a photo of a foil). In the eyewitness context, an 

“old” decision is an identification (ID), and a “new” decision is a non-identification (non-ID). 

The main difference between a standard old/new recognition experiment and a showup is that in 

the former, each subject studies and is tested with many old and new items, whereas in the latter, 

each study item is viewed by many subjects who are then tested with a single old or new item. 

Thus, item variance is a significant factor in a typical list-memory study, whereas subject 

variance is a significant factor in a showup experiment. Despite these differing sources of 

variance, the signal detection conceptualization of the problem is the same in the two cases. As 

with the standard old/new recognition memory test, a liberal response bias (with c set far to the 
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left) would yield hit and false alarm rates close to 1, and a conservative response bias (with c far 

to the right) would yield hit and false alarm rates close to 0.  

A Signal Detection Model for Lineups 

 The standard signal detection-based interpretation of lineup performance involves 

additional considerations because of the presence of foils on a given test trial. Thus far, this 

model has most often been applied to simultaneous lineups. In a 6-person simultaneous lineup, 

all six faces are presented together. The simplest signal detection model of decision making on 

this task is still grounded in the basic model shown in Figure 1. The lineup version of the model 

holds that, for a target-present lineup (consisting of one guilty suspect plus five foils), the 

memory signal for the suspect is randomly drawn from the target distribution, and the memory 

signals for the five foils are randomly drawn from the foil distribution. For a target-absent lineup 

(consisting of one innocent suspect plus five foils), the memory signals for all six lineup 

members are randomly drawn from the foil distribution. The reason is that for a fair target-absent 

lineup, from the witness’s perspective, the innocent suspect is effectively a foil (i.e., the innocent 

suspect – like the foils – is someone who physically resembles the perpetrator but did not commit 

the crime). Using the simplest decision rule, the most familiar face in the lineup – that is, the face 

that generates the strongest memory signal (i.e., the MAX signal) – is identified if it exceeds the 

decision criterion (c). This simple model is known as the Independent Observations model 

(Duncan, 2006; Macmillan & Creelman, 2005; Wixted, Vul, Mickes, & Wilson, 2018). 

A hit – also known as a correct ID – occurs when the MAX signal in a target-present 

lineup is generated by the guilty suspect and exceeds the decision criterion. A false alarm – also 

known as a false ID – occurs when the MAX signal in a target-absent lineup is generated by the 

innocent suspect and exceeds the decision criterion. A foil ID for either lineup occurs if one of 
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the foils happens to generate the MAX memory signal in the lineup and the strength of that 

signal exceeds the criterion. If none of the faces in the lineup generate a memory signal that 

exceeds the criterion, no ID is made (i.e., the lineup is rejected).  

Using a simultaneous lineup, if eyewitnesses have a conservative decision criterion, both 

the hit rate and the false alarm rate will be low (and will reach 0 in the limit), as will the foil ID 

rate. At the other extreme, however, an infinitely liberal criterion will yield higher hit and false 

alarm rates but will not yield hit and false alarm rates of 1.0, as would be the case for a showup. 

So long as the identity of the suspect is not highlighted (i.e., the lineup is fair and the 

administrator does not provide any clue as to which photo is the suspect), the hit rate would be 

unlikely to reach 1.0 because the liberal eyewitness must determine which of the six faces in the 

target-present lineup is the perpetrator. Thus, a liberal eyewitness who failed to form a strong 

memory of the perpetrator would stand a good chance of landing on a filler. The false alarm rate 

would also fall well below 1.0. In a fair target-absent lineup, the maximum false alarm rate under 

extremely liberal responding would be only 1 / 6 = .167. Despite these upper-bound constraints, 

it is still true that the hit rate and the false alarm rate will monotonically increase as eyewitnesses 

move from more conservative to more liberal responding. The hit and false alarm rates generated 

by varying the decision criterion, when plotted against each other, trace out the lineup ROC 

curve.  

ROC data, including lineup ROC data, can be generated in more than one way, such as 

using different instructions across different conditions to induce liberal, neutral, or conservative 

response biases. For example, a liberal response bias could be induced by instructing participants 

to choose the perpetrator even if they have to guess; a neutral response bias could be induced by 

simply indicating that the perpetrator may or may not be in the lineup; and a conservative 
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response bias could be induced by instructing participants not to make an identification unless 

they were highly confident the person they were selecting was actually the perpetrator. These 

conditions would yield high, medium, or low hit and false alarm rates, respectively, and plotting 

the hit rate vs. the false alarm rate would yield a 3-point ROC. This type of ROC is often called a 

“binary” ROC (e.g., Dube & Rotello, 2012) because the recognition decisions within a given 

condition are binary (ID vs. no ID). Alternatively, and more commonly, confidence ratings can 

be used to generate the ROC data from a single condition. Consider a 3-point confidence scale 

for positive IDs of the suspect made with high, medium, or low confidence. The conservative 

(leftmost) ROC point would be obtained by counting only IDs made with high confidence; the 

middle ROC point would be obtained by counting IDs made with medium or high confidence, 

and the liberal (rightmost) ROC point would be obtained by counting all IDs (made with high, 

medium, or low confidence).  

For decades, research from the basic memory and perception literatures has found that 

various strategies for generating ROC data tend to yield the same (or at least similar) curves 

(e.g., Benjamin, Tullis & Lee, 2013; Dube & Rotello, 2012; Koen & Yonelinas, 2011; Swets, 

Tanner & Birdsall, 1961). Recently, Mickes et al. (2017) demonstrated that the same2 is true for 

simultaneous lineup ROC data generated using instructions or confidence ratings (i.e., the binary 

ROC was similar to the ratings-based ROC). Figure 2 reproduces their results, a ratings ROC 

from confidence ratings (Figure 2A) and a binary ROC from an instructional biasing 

manipulation with 4 conditions (Figure 2B). The smooth curve drawn through the data is the 

same for both plots. Although there is some evidence for a reduction in discriminability for the 

                                                 
2 Mickes et al. (2017) found that discriminability was somewhat reduced when biasing instructions were intended to 
make people extremely liberal or conservative, theoretically due to increased criterion variability across participants. 
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extreme biasing conditions in Figure 2B, the ROC paths traced out using these two methods are 

similar. The same is definitely not true for sequential lineups.  

A Signal Detection Analysis of Sequential Lineups 

The seemingly simple change from presenting photos simultaneously to presenting them 

sequentially (and with a stopping rule) raises some surprisingly complicated theoretical and 

empirical issues. Nevertheless, it is worth thinking through those complexities because 30% of 

U.S. law enforcement agencies have now adopted the sequential procedure (Police Executive 

Research Forum, 2013). Given the applied significance of this recognition memory procedure, it 

seems important to understand how sequential lineups affect underlying (theoretical) 

discriminability (d') and, separately, empirical discriminability (i.e., area under the ROC, or 

AUC). Although d' and AUC ordinarily agree about the effect of an independent variable on 

discriminability, they are capable of reaching opposite conclusions (Wixted & Mickes, 2018). As 

shown later, the sequential procedure can yield that unusual outcome. 

Prior Signal Detection Analyses of the Sequential Procedure. There is already reason to 

believe that much of what we commonly understand about ROC analyses of recognition memory 

breaks down with a sequential lineup. Using a signal detection model, Rotello and Chen (2016) 

simulated ROC data generated by the sequential procedure. As noted above, the simplest version 

of the model for simultaneous lineups relies on a MAX decision rule according to which the face 

in the lineup that generates the strongest memory signal is identified if the strength of that signal 

exceeds a decision criterion. For the sequential procedure, by contrast, a first-above-criterion 

decision rule is used because of its stopping rule. That is, the first face that generates a memory 

signal strong enough to exceed the criterion is identified, terminating the procedure. 
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Rotello and Chen (2016) showed that the constraints in a sequential lineup introduced by 

the stopping rule are such that changing the overall decision criterion from liberal to conservative 

across conditions (i.e., generating binary ROC data) traces out an unusual curve. This curve does 

not increase monotonically (as the one in Figure 2B does) but instead increases at first and then 

decreases towards the diagonal line of chance performance. What explains that pattern? 

Consider, for example, a group of eyewitnesses instructed to use an infinitely conservative 

criterion. These eyewitnesses never make an identification so the hit rate and false alarm rate 

would both be 0, as it would be for any signal detection task. Next consider the opposite extreme, 

namely, a group of eyewitnesses instructed to use an infinitely liberal decision criterion. Because 

these witnesses are always going to make an identification regardless of the strength of the 

memory signal generated by a test item, they will always identify the first face in the lineup, 

thereby terminating the procedure at that point. For a subset of these infinitely liberal witnesses, 

the suspect will have been randomly assigned to appear in position 1. A guilty suspect in position 

1 will always be correctly identified by this subset of liberal eyewitnesses. Similarly, an innocent 

suspect in position 1 will always be incorrectly identified.   

Of course, the suspect will not always appear in the first position. For other witnesses, the 

suspect will appear somewhere in positions 2 through 6. When the suspect is placed in those 

positions, the stopping rule is such that infinitely liberal eyewitnesses will have no opportunity to 

make any additional identifications, having already identified a filler in position 1. If we assume 

that there is an equal probability of the suspect appearing in any of the six positions, this means 

that a group of eyewitnesses with an infinitely liberal criterion will have hit and false alarm rates 

of 1/6 ≈ .167. Thus, the instruction-based binary ROC for a fair sequential lineup ranges from [0, 
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0] when an infinitely conservative criterion is used to [.167, .167] when an infinitely liberal 

criterion is used.  

As shown by Rotello and Chen (2016), for intermediate settings of the criterion, the ROC 

will bow up and away from the diagonal line of chance performance: the sequential binary ROC 

curve is non-monotonic. Figure 3 reproduces results shown in Figure 6 of Rotello and Chen 

(2016). The figure shows the predicted ROC curves for simultaneous and sequential lineups 

using an equal-variance model with d' = 1.5 as the criterion is swept over the full range from 

liberal to conservative. Note that despite the equivalence in underlying d', the area under the 

ROC would be quite different for the two procedures (Wixted & Mickes, 2018), clearly favoring 

the simultaneous procedure. Thus, even if d' were the same for the two procedures, then, 

according to this model, it would be a mistake for the police to believe that it would make sense 

to adopt the sequential procedure. For any given false alarm rate, the simultaneous procedure 

would be able to achieve the same or higher hit rate. Critically, this reduction in area under the 

ROC is not due to reduced psychological (i.e., underlying) discriminability; it arises entirely 

from the physical constraint imposed by the standard first-identification-only stopping rule. 

The unusual sequential ROC simulated by Rotello and Chen (2016) sets the stage for the 

detailed theoretical and empirical analysis of the sequential procedure that we report here. To 

guide our inquiry into these issues, we also rely on a simple signal detection model using a first-

above-criterion decision rule to generate predictions about sequential performance. Later, we 

report the results of two large-N experiments to test whether the predictions made by Rotello and 

Chen (2016) and the additional predictions we generate next are accurate. The parameters used 

in our simulations are set to approximate the empirical data we consider later. To begin, 

following Rotello and Chen, we use a signal detection model of binary ROC data in which a 
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different decision criterion is used in each of several different conditions (e.g., as could be 

achieved using different instructions across conditions).  

Figure 4A illustrates this simple equal variance3 signal detection model, with d' = 1.74, 

and with the decision criteria set to be liberal (c = -0.25), neutral (c = 0.93), or conservative (c = 

1.75). As we earlier assumed for the simultaneous procedure, the model assumes that for each 

face in a target-present lineup, one value is randomly drawn from the target distribution (the 

guilty suspect) and five values are randomly drawn from the foil distribution, and for each face 

in a target-absent lineup, six values are randomly drawn from the foil distribution. However, in 

contrast to a simultaneous lineup, the six values for a given sequential lineup are individually 

compared against a preset criterion in the order in which they were randomly sampled. If one of 

these memory-match values exceeds the criterion, an ID is made and the test is terminated (i.e., a 

first-above-criterion decision rule was used). Hit and false alarm rates are computed in the 

manner described earlier for the simultaneous procedure. That is, the hit rate is the proportion of 

all target-present lineups in which eyewitnesses identified the guilty suspect, and the false alarm 

rate is the proportion of all target-absent lineups in which they identified an innocent suspect. For 

the time being, we ignore foil IDs, though they are always taken into consideration when fitting 

signal detection models to lineup data (simultaneous or sequential). Because this simulation was 

performed in the same manner as the one performed by Rotello and Chen (2016), it is not 

surprising that it yielded a non-monotonic ROC similar to the one they reported. Figure 4B 

shows the predicted binary ROC points, and it is clear that it traces out a non-monotonic path. 

                                                 
3 In analyzing our data, we will allow for an unequal variance model in order to better fit the data. However, this 
change does not substantively affect any of our model predictions. Although there is nothing special about the 
particular c values used, we chose them because they result in approximately the same overall false alarm rates that 
were observed in our empirical data presented later.      
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However, as we explain next, there is more to the surprising story of how the stopping rule 

affects ROC data generated by the sequential procedure. 

One Binary ROC Yields Multiple Confidence-based ROCs. Whereas Figure 4B 

reproduces what has been shown before, Figure 4C shows another unusual feature of sequential 

ROC data. More specifically, Figure 4C shows the confidence-based ratings ROC associated 

with each instruction-based binary ROC. The rightmost point of each rating’s ROC in Figure 4C 

is the same as the corresponding point on the binary ROC in Figure 4B. Consider, for example, 

subjects assigned to the liberal instructional biasing condition (leftmost criterion in Figure 4A). 

Their overall hit and false alarm rates would correspond to the rightmost ROC point in Figure 

4B, but if those subjects were asked to provide confidence ratings, their confidence-based ROC 

would correspond to the lowest curve in Figure 4C. For subjects assigned to the conservative 

instructional biasing condition (rightmost criterion in Figure 4A), their overall hit and false alarm 

rates would correspond to the leftmost ROC point in Figure 4B. However, if they were asked to 

provide confidence ratings, their confidence-based ROC would correspond to the highest ROC in 

Figure 4C. In other words, each between-condition, binary ROC point has its own unique 

confidence-based ROC.  

If we performed this exact same simulation for the simultaneous lineup wherein the 

overall criterion is either liberal, neutral, or conservative, all three confidence-based ROCs 

would fall on top of one another. In other words it would look like a single ROC curve as it does 

for the simultaneous lineup in Figure 3. However, unlike all other cases that we are aware of, for 

the sequential procedure, a singular binary ROC like that shown in Figure 4B does not have a 

corresponding singular confidence-based ROC. Instead, there is one confidence-based ROC for 

each binary ROC point, as depicted in Figure 4C, where the dotted lines correspond to the binary 
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ROC in Figure 4B. So far as we know, this dissociation between confidence-based and binary 

ROC data is unique to the sequential procedure.  

Although we illustrated this issue with respect to hypothetical instruction-based binary 

ROCs vs. confidence-based ratings ROCs, the same issue can be illustrated using data from the 

neutral response biasing condition only. We do so next because it corresponds directly to how we 

later analyze empirical data obtained using the sequential procedure. Figure 5 shows a 

confidence scale ranging from -100 (sure the face was not seen) to +100 (sure this is the face of 

the perpetrator). In a sequential lineup procedure, the witness can be asked to provide a 

confidence rating using this scale for each face in the lineup. The standard stopping rule – but not 

the only possible stopping rule – stipulates that any positive ID associated with a confidence 

rating greater than 0 terminates the procedure (such that any IDs of subsequent faces in the 

lineup would not count). The confidence-based ROC for positive suspect IDs in the neutral 

condition would correspond to the middle ROC curve shown in Figure 4C.  

Given the continuous nature of the confidence scale shown in Figure 5, it should be clear 

that defining the stopping rule to consist of any ID greater than 0 is an arbitrary decision. Indeed, 

using that same set of data from the neutral condition, one could specify a different decision 

criterion for counting positive IDs in separate analyses, with each analysis corresponding to a 

different stopping rule. For example, a conservative criterion could be specified by counting only 

IDs made with a confidence rating of 80 or more. Moving the criterion from 0 to a more 

conservative setting of 80 for either showups or simultaneous lineups would simply move the 

ROC point to the left on the same ROC (i.e., the ROC curve itself would not change). In fact, 

this is precisely how a conservative ROC point would be generated for a confidence-based ROC. 

However, given the nature of the stopping rule, setting a more conservative criterion for the 
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sequential lineup has additional consequences: IDs made in an earlier sequential position with a 

confidence rating of less than 80 would no longer cancel subsequent IDs (because those earlier 

IDs would now be treated as effective non-IDs). The resulting confidence-based ROC for this 

conservative decision rule would cover a narrower range (i.e., the maximum hit and false alarm 

rate would be lower) and would also be elevated compared to the neutral ROC curve, as shown 

in Figure 4C. Similarly, setting the decision criterion to -80 (a very liberal position) has the 

opposite effect, lowering and extending the confidence-based ROC to the right.  

In the empirical analyses we present later, we analyze the data in this manner. That is, we 

analyze data from a sequential ROC study that used neutral instructions and collected confidence 

ratings using a scale like that shown in Figure 5. In real-world scenarios, the police could opt to 

establish binary decision criteria in the same way that we did so long as they collected 

confidence for each ID. For example, neutral Jurisdiction A (the typical case) might use the most 

intuitive rule and count any ID made with a confidence rating greater than 0. By contrast, 

conservative Jurisdiction B might decide not to count an ID unless it was made with a confidence 

rating greater than 80 (in hopes of reducing misidentifications of the innocent), whereas liberal 

Jurisdiction C might decide to count any ID made with a confidence rating greater than -80 (in 

hopes of increasing correct identifications of the guilty). If they could be measured, the hit and 

false alarm rates from these three jurisdictions would create a 3-point binary ROC. Yet each 

binary ROC point would have its own separate confidence-based ROC.  

Sequential Position Effects. The story of confidence-based ROCs generated using the 

sequential procedure becomes even more complicated (and more surprising) when we consider 

the ROC curves separately by suspect position (i.e., where the suspect appears in the sequence of 

six faces). For the simulated analyses presented thus far, suspects were randomly assigned to 



Running head: Making Sense of Sequential Lineups 16 

position and the data were aggregated across position. This corresponds to how sequential ROC 

data have been plotted in previous empirical research (e.g., Mickes et al., 2012).  However, the 

simple signal detection model can also predict ROC curves separately for trials in which the 

suspect (innocent or guilty) appears in position 1, position 2, position 3, and so on.  

We used the first-above-criterion signal detection model in a simulation to investigate 

position effects by first assigning the suspect (either innocent or guilty) to a randomly selected 

position (1 through 6) and then determining the probability that the suspect would be identified, 

separately for each position. If, for example, the suspect was randomly assigned to position 3, the 

probability of a suspect ID would be the probability that a foil memory strength did not exceed 

the neutral decision criterion in either position 1 or position 2 times the probability that the 

suspect memory strength in position 3 did exceed the neutral decision criterion. If no filler IDs 

happen to occur in the first two positions and a suspect ID is made in position 3, the 

corresponding confidence rating is determined by the highest confidence criterion exceeded by 

the memory strength of the suspect. Keep in mind that, sometimes, the suspect memory strength 

will far exceed the decision criterion (and will be the MAX face in the lineup) but will not be 

identified because a preceding filler memory strength also exceeded the criterion, even if only 

slightly. This is the constraint imposed by the stopping rule.  

Figure 6A shows the six separate position-specific ROC curves for the neutral response 

bias condition, as predicted (via simulation) by the first-above-criterion signal detection model. 

As suspect position increases from 1 to 6, each successive rightmost ROC point – that is, each 

successive overall hit and false alarm rate – falls below the ROC for the immediately preceding 

position (not on the same ROC), and also moves to the left. Thus, for a given false alarm rate 

(e.g., false alarm rate = .05), the area under the ROC decreases with increasing suspect position.  
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As noted above, the overall hit and false alarm rates both decrease as suspect position 

increases because foil IDs that occur in earlier positions remove opportunities to make suspect 

IDs in later positions. The position-specific ROC data would not seem at all unusual if the 

reduction in the overall hit and false alarm rate with increasing sequential position were such that 

the resulting ROC point fell on a more conservative location on the ROC for the preceding 

position. In that case, the effect of foil IDs made in earlier positions (canceling opportunities to 

make suspect IDs in later positions) would be the effective equivalent of adopting a more 

conservative decision criterion. However, as the innocent and guilty suspects are placed later in 

the lineup, the overall correct and false alarm rates instead drop to a more conservative location 

on a lower ROC. To remain on the same ROC but at a more conservative location, the false 

alarm rate would have to decrease to a proportionately greater extent than the hit rate decreased. 

This is just another way of saying that the diagnosticity ratio (hit rate / false alarm rate) increases 

as responding becomes more conservative while holding discriminability constant (i.e., while 

staying on the same ROC). Indeed, that property of the DR – namely, that it increases with more 

conservative responding while holding discriminability constant – is why it was a mistake for the 

field to once rely on that measure to proclaim a sequential superiority effect. However, as the 

position of the suspect in the sequential lineup increases, the stopping rule does not reduce hit 

and false alarm rates in the same way that using a more conservative decision criterion does. 

Instead, foil IDs that occur in earlier sequential positions cancel opportunities to make later 

suspect IDs to an equal extent for innocent and guilty suspects. For example, if the innocent and 

guilty suspects are in position 2, and if 25% of witnesses ID a foil in position 1 for both target-

present and target-absent lineups (which, at position 1, are identical), then, all else being equal, 

both the hit rate and the false alarm rate will decrease by 25% compared to position 1. Table 1 



Running head: Making Sense of Sequential Lineups 18 

shows the overall hit and false alarm rates (i.e., the rightmost ROC points) and their 

corresponding diagnosticity ratios for the simulated ROC curves shown in Figure 6A. Although 

the hit and false alarm rates drop dramatically with increasing position (because opportunities to 

make a suspect ID steadily decrease), the diagnosticity ratio for each rightmost ROC point 

remains roughly constant at about 4.5, which further illustrates why the DR is not an appropriate 

measure of discriminability. Empirical discriminability is clearly decreasing with suspect 

position in these simulated data (despite underlying d' remaining constant), yet the DR misses 

that fact. 

As a practical matter, the theoretical data in Figure 6A suggest that if the police always 

placed the suspect in position 6, for example, they would achieve what appears to be a desirable 

outcome (namely, a low false alarm rate, protecting the innocent), but the cost would be a 

dramatic reduction in empirical discriminability. Indeed, one could achieve both a lower false 

alarm rate and a much higher hit rate by instead placing the suspect in position 1 and using a 

more conservative location on the confidence scale as the criterion for counting an ID. For 

example, in Figure 6A, the fifth point from the right on the position 1 ROC has a hit rate of .56 

and a false alarm rate of just under .06. This has both a higher hit rate and a lower false alarm 

rate than the overall hit rate of .30 and false alarm rate of .07 when the suspect is instead placed 

in position 6.   

The Interaction of Response Bias and Position Effects. Earlier, we replicated simulations 

performed by Rotello and Chen (2016), showing that according to a simple signal detection 

model, for a given d', the binary ROC generated by manipulating response bias is non-monotonic 

(Figure 4B). In addition, we just showed that according to the same model, the confidence-based 

ROC changes as a function of sequential position. Thus, according to this model, both the overall 
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decision criterion and, separately, the sequential position of the suspect within the lineup affect 

the empirical ROC. We now show that these two effects (the effect of the placement of the 

overall decision criterion and, separately, the effect of suspect position) theoretically interact 

with each other.  

As shown in Figure 6B, sequential position effects become even more exaggerated when 

a liberal criterion is used (the criterion placed at -80 in Figure 5). If eyewitnesses use a liberal 

criterion, it is very likely that one of the fillers in the first or second position will exceed the 

decision criterion. This makes it almost impossible for witnesses to ever have the opportunity to 

identify a face presented later in the lineup. By contrast, Figure 6C shows that position effects 

are minimized when a conservative criterion is used (the criterion placed at 80 in Figure 5). This 

is because foil identifications are much less likely to occur, which allows witnesses to have the 

opportunity to identify suspects appearing later in the lineup.  

Note that the number of confidence-based ROC points decreases as the overall decision 

criterion becomes more conservative. For example, when placed at a very conservative position 

(80), only 2 confidence-based ROC points – namely, IDs made with confidence greater than 80 

and IDs made with confidence greater than 90 – can be computed. When placed at a very liberal 

position (-80), as many as 18 confidence-based ROC points can be computed. 

As can be observed in Figure 6A-6C, empirical discriminability is highest when the 

innocent and guilty suspects appear in the first position of the lineup and lowest when they 

appear in the last position (though this effect is minimized for the conservative condition). When 

the suspect appears in the first position, the sequential lineup is theoretically equivalent to a 

showup. In fact, if the police always placed the suspect in position 1, the procedure would 

presumably differ from a showup only in that witnesses might adopt a more conservative 
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decision criterion, knowing that additional photos will be shown if no ID is made for the first 

photo. If the police instead always placed the suspect in a later position, the basic signal 

detection model predicts that empirical discriminability should be reduced relative to a showup. 

The predicted reduction in discriminability is due entirely to the structural constraints of the first-

identification-only stopping rule and does not imply that psychological discriminability (i.e., d', 

the ability to tell the difference between innocent and guilty suspects) necessarily changes as the 

lineup progresses. The question of how psychological discriminability changes (or not) as a 

function of sequential position is an independent issue, and we turn to a consideration of that 

issue next. 

The Effect of Sequential Position on Psychological Discriminability (d'). Previous 

research suggests that, even in the absence of a structural constraint, psychological 

discriminability might change as a function of sequential testing position. For example, studies 

using standard list-learning paradigms have found that recognition memory performance tends to 

decline as a function of test trials (Peixotto, 1947; Murdock & Anderson, 1975; Criss, Malmberg, 

& Shiffrin, 2011). Osth, Jansson, Dennis, and Heathcote (2018) recently explored this 

phenomenon and found that it was primarily due to prior test items causing the contextual 

representation that cues memory to drift. Declining performance over the course of testing might 

also occur because of test-item interference and/or changes in speed-accuracy thresholds for later 

test trials. Regardless of which explanation applies, this line of research suggests that underlying 

discriminability might, if anything, decrease as sequential position of the suspect in a lineup 

increases. If so, sequential lineups would be worse than showups because both psychological 

factors and structural constraints would contribute to lower performance for later positions.   
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Another theory predicts that psychological discriminability might increase as a function 

of sequential position. Any such improvement in psychological discriminability would serve as a 

countervailing force against the structural constraints that lower performance for later positions. 

Diagnostic-feature-detection theory (Wixted & Mickes, 2014) holds that seeing faces that match 

the general description of the suspect teaches eyewitnesses which features are unlikely to be 

helpful for making an identification –namely, the features that are common to everyone in the 

lineup. These common features are the ones that were central to constructing the lineup in the 

first place (i.e., the selection of physically similar foils who all correspond to the description of 

the perpetrator). Precisely because these features are shared, taking them into consideration 

would reduce the ability of witnesses to distinguish between innocent and guilty suspects, 

whereas discounting those features would have the opposite effect (enhancing discriminability).  

Diagnostic feature-detection theory was advanced to explain why simultaneous lineups 

typically yield a higher ROC than sequential lineups, even when responding is conservative 

(such that constraints imposed by the stopping rule are minimized), as it was in Mickes et al. 

(2012). The basic idea is that when faces are presented simultaneously, it is easier to detect (and 

then discount) non-diagnostic facial features than when faces are presented sequentially. When 

the suspect appears in the first position, there is no possibility of learning what features are 

diagnostic, but as the sequential lineup unfolds, the theory predicts that the same phenomenon 

should eventually emerge. Thus, if one assumes that faces need not be presented simultaneously 

for participants to notice and discount non-diagnostic features, the prediction would be that 

psychological d' should increase with increasing sequential position, an effect that could be 

easily masked by the large constraints on the empirical ROC imposed by the stopping rule.   
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Previous research on how memory performance changes as a function of sequential 

position has not distinguished between empirical and psychological discriminability. Doing so 

requires both computing area under the ROC to measure empirical discriminability and fitting a 

model to the ROC data to measure psychological discriminability. Instead, only measures of 

empirical performance – the diagnosticity ratio originally and, later, partial area under the ROC – 

have been used. Moreover, the results have been somewhat inconsistent. Carlson, Gronlund, and 

Clark (2008) found that the diagnosticity ratio increased for later positions of the sequential 

lineup, which is consistent with increasing discriminability but might instead simply reflect 

conservative responding as a function of lineup position. For example, a similar explanation in 

terms of conservative responding has been proposed to explain the effect of providing a verbal 

description of a face (Clare & Lewandowsky, 2004). Theoretically, providing a verbal 

description allows people to realize that the task is challenging, which causes them to behave 

more cautiously in their subsequent responding. Critically, this more conservative responding 

can occur whether or not discriminability is affected (Wilson, Seale-Carlisle, & Mickes, 2017).   

In a study that reported more convincing evidence of suspect position on discriminability, 

Gronlund et al. (2012) performed ROC analysis separately for when the suspect appeared in 

either the second or fifth position of a sequential lineup. They found that empirical 

discriminability (measured as partial area under the ROC curve) was significantly higher for 

position five than position two, as predicted by the diagnostic feature-detection theory. Given the 

constraints imposed by the stopping rule (which, if anything, create a force in the opposite 

direction), this result indicates that underlying discriminability must have increased for later 

positions. However, a position effect on empirical discriminability measured by partial area 

under the ROC was not observed in other studies of the sequential procedure (Carlson & 
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Carlson, 2014; Dodson & Dobolyi, 2013). Thus, the empirical picture is mixed. Given that there 

is some theoretical reason to believe both that d' should increase with sequential position (due to 

diagnostic feature detection) and that area under the curve should decrease with sequential 

position (because of structural constraints imposed by the stopping rule), a mixed empirical 

literature may be unsurprising. What is somewhat surprising is that evidence of a decreasing area 

under the curve with increasing sequential position (Figure 6A) has never been empirically 

observed. However, we observed it in the study described next. Moreover, the very same data 

provided evidence that despite the decreasing area under the curve with increasing sequential 

position, d' changed in the opposite direction. 

Experiment 1 

The first experiment was a large-N investigation of eyewitness identification performance 

using a sequential lineup. Many participants were tested so that the data could be productively 

analyzed separately by sequential position. Each participant first watched a simulated crime 

video and then attempted to identify the perpetrator from a 6-member sequential lineup. All 

participants were presented with (and supplied confidence ratings for) all 6 faces in the lineup, 

which allowed us to specify different stopping rules. We created different points on the “binary” 

ROC by setting a different confidence criterion for counting an ID (namely, IDs with a 

confidence rating > -80, > 0, or > 80), as illustrated in Figure 5.  

Method 

Participants 

 A total of 7,174 subjects were tested using MTurk, but some answered the attention-

check question incorrectly and were excluded, leaving a total of 6,530 participants. Of those, 

3,258 were presented with a target-present lineup and 3,272 with a target-absent lineup. 
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Participants were each paid $0.25 for completing the task. 

Materials and Procedure  
 
 All participants watched an eight-second video of a woman spray-painting graffiti. 

Participants then completed a distractor task (unscrambling the names of ten U.S. states) for 

approximately 2 minutes before beginning the sequential lineup test. Just prior to the lineup, 

participants received neutral identification instructions (indicating that the target from the video 

may or may not be in the lineup) and were also instructed on how to use the confidence scale. 

Participants were randomly assigned to only one lineup test – either a target-present sequential 

lineup or a target-absent sequential lineup. The target-present lineups contained a photo of the 

suspect (the woman in the video) and five filler photos, which were randomly selected from a set 

of 113 description-matched photos. The position in which the suspect appeared was randomized. 

Target-absent lineups consisted of six filler photos, again randomly selected from the set of 113. 

All participants were shown each photo one at a time. For each face, they were asked whether or 

not it was the woman from the video, and to indicate their level of confidence using a scale from 

-100 to 100 (Figure 5). Note that participants were asked to provide a confidence rating for all 6 

faces, which means that the procedure was not actually terminated if a face was identified early 

in the sequence. As is typically true, participants were not told how many faces they could expect 

to see, and they were not told that only their first ID would count.  

Results 

Initially, we simply plotted the ROC data aggregated over sequential position. Later, we 

plot the data separately by position and also analyze the data by fitting a signal detection model. 

We begin by plotting the binary ROC, generating different binary ROC points by setting a 

different decision criterion on the confidence scale. As a reminder, if a simultaneous lineup or a 
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showup were used, creating ROC data using this approach (instead of using instructions to 

manipulate the criterion across conditions, for example) would simply trace out the confidence-

based ROC. That is, in fact, how the confidence-based ROC is typically created. However, 

because the sequential procedure uses a stopping rule, the binary analysis (i.e., using confidence 

ratings to set the value above which an ID is counted but otherwise ignoring differences in 

confidence) is not identical to computing the confidence-based ROC.    

Binary ROC Data. The most common way to analyze sequential ROC data is to count 

any ID that occurs with a confidence rating greater than 0. If a filler ID with a confidence rating 

greater than 0 occurs first, the rest of the trial is effectively canceled, so neither the innocent 

suspect nor the guilty suspect will be identified by that witness. If a suspect ID occurs first, then 

it is counted as a hit if the suspect is guilty and counted as a false alarm if the suspect is innocent. 

The total number of target-present and target-absent lineups can be denoted nTP and nTA, 

respectively. In our study, nTP = 3258, and nTA = 3272. Across all lineups, the total number of 

hits and false alarms can be denoted nH and nFA. From these values, an overall (binary) hit and 

false alarm rate (HR and FAR, respectively) can be computed, where HR = nH / nTP and FAR = 

nFA / nTA. In our study, nH = 1687, so HR = 1687 / 3258 = .518. Because we did not have a 

designated innocent suspect in target-absent lineups, we estimated nTA (the number of false IDs 

of innocent suspects) by dividing the total number of first foil IDs in target-absent lineups (2229) 

by the lineup size of 6, such that nTA = 2229 / 6 = 371.5. Thus, FAR = 371.5 / 3272 = .114. 

Approximately the same FAR would be obtained if we instead randomly selected one foil on 

each target-absent lineup to serve as the designated innocent suspect. This HR, FAR pair 

(.518, .114) constitutes one point on the binary ROC plot, the one that corresponds to a neutral 

response bias. However, as noted earlier, one can use a more liberal or a more conservative 
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criterion for counting IDs. We next reanalyzed the data using a liberal criterion by counting an 

ID if it was accompanied by a rating greater than -80. Thus, for example, if a face was rejected 

with a confidence rating of -70, it was now scored as a positive ID, but if a face was rejected 

with a rating of -90, it was still scored as a non-ID. Using this liberal decision rule allowed us to 

compute a second pair of overall hit and false alarm rates (i.e., a second binary ROC point). 

Finally, we reanalyzed the data again, this time under a conservative criterion – only counting an 

ID if it was accompanied by a rating of more than 80 (yielding a third binary ROC point). The 

binary ROC data are presented in Figure 7A. It is clear that they closely resemble the data 

generated earlier using a signal detection model (Figure 4B).  

These are the first empirical data that correspond to the non-monotonic sequential ROC 

predicted by Rotello and Chen (2016). Thus, the results lend validity to their signal detection-

based analysis. However, we did not actually manipulate the decision criterion across conditions 

(e.g., by using conservative, neutral or liberal instructions). If the overall decision criterion were 

successfully manipulated in that manner, there is no reason to expect that the results would differ 

in any appreciable way, but a definite answer would have to await further research. Keep in mind 

that the way we did choose to manipulate the overall decision criterion is an approach that is 

available to the police to use, should they wish to. For example, a particular jurisdiction could 

choose to adopt the sequential lineup procedure and to only count IDs made with relatively high 

confidence in an effort to reduce false IDs.  

Confidence-based ROC data. For each of the overall criterion settings used for the binary 

analysis, we can also plot a confidence-based ROC, as we did earlier using simulated data based 

on a simple first-above-criterion signal detection model (Figure 4C). Figure 7B displays the 

empirical data computed the same way, and the predicted pattern was largely confirmed. Note 
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that the neutral condition corresponds to how sequential ROC data have been plotted and 

analyzed in the past. However, although it seems natural, there is nothing inherently special 

about this particular criterion placement. If we wanted to know what empirical discriminability 

would be for identifications made with only higher levels of confidence, we could count only 

positive identifications that had been made with a confidence level of (for example) > 80. For a 

more liberal criterion, we could create a liberal curve by counting any decision made with a 

confidence level of > -80. Again, normally (i.e., with simultaneous lineups or showups), this 

approach would simply yield another point on the same ROC curve generated using a neutral 

response criterion. What is strange about the sequential lineup, however, is that the specific 

criterion placement changes whether or not one counts IDs made later in the lineup. As 

responding becomes more liberal, eyewitnesses increase the chances that they will make an 

incorrect identification on an earlier foil and not be permitted to identify a suspect that appears 

later in the lineup. This is why the three confidence-based ROCs shown in Figure 7B differ from 

each other (though the neutral and conservative ROCs are close).  

The data shown in Figure 7B largely correspond to what we predicted using a simple 

signal detection model (Figure 4C), though the data from the neutral and conservative analyses 

are closer than expected. These results raise the possibility that, unlike with the simultaneous 

lineup, if two studies happened to differ only with respect to how liberal or conservative the 

participants were, their confidence-based ROC data would fall on different curves for that reason 

alone (i.e., even if underlying d' were the same in both studies). 

Sequential Position Effects. Figure 8A shows the confidence-based sequential ROC data 

using the neutral decision criterion computed separately by position. Clearly, as predicted earlier 

using a simple signal detection model (Figure 6), the area under the ROC steadily decreases as 
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position increases. To compare empirical discriminability across positions, partial area under the 

curve (pAUC) analyses must be conducted because none of the ROCs cover the full range of 

false ID rates. A common approach is to compare the pAUCs over the false ID rate range 

covered that is in common between the two conditions (i.e., over the range covered by the 

shorter of the two ROCs). Using the false ID rate range covered by the position 6 data, the 

difference in empirical discriminability between position 1 (pAUC = .013) and position 6 (pAUC 

= 0.010) was significant, D = 2.02, p = .044. The effect is barely significant only because so 

much of the position 1 data is excluded from this analysis. For example, using the larger false ID 

rate range covered by the position 3 data, the difference between position 1 (pAUC = .060) and 

position 3 (pAUC = .050) was more convincingly significant, D = 2.56, p = .010. 

Table 2 shows the overall HR and FAR (i.e., rightmost ROC point) and the DR for each 

position. As predicted earlier (Table 1), the DR remains essentially constant. This result 

illustrates this importance of not relying on the DR as a measure of discriminability. Had this 

been the primary dependent measure in our experiment, it would appear as though the sequential 

lineup does not suffer from position effects despite the existence of rather large position effects 

in the ROC data. In fact, the prior use of the DR may explain why the field once came to the 

apparently mistaken conclusion that the sequential procedure is not compromised by position 

effects (Lindsay & Wells, 1985).  

Figure 8B shows that the effect of position is magnified using a liberal decision criterion 

(counting any ID greater than -80). When a liberal criterion is used, most of the IDs will occur in 

position 1 (whether it is a foil or a suspect). Because almost all suspects appearing in position 1 

will be identified, the hit and false alarm rates approach the upper right corner of the ROC (as 

they would in a showup). However, because foils appearing in position 1 will also almost always 
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be identified, there are very few opportunities to identify suspects in positions 2 through 6; hence 

the dramatic drop in the ROCs for those positions. 

Finally, as predicted in the signal detection-based simulations we presented earlier, 

position effects are minimized when a conservative criterion is used—that is, by counting IDs 

only if confidence exceeded 80 (Figure 8C). Note that the sequential procedure often does induce 

a conservative overall response bias. For example, in Experiment 1a of Mickes et al. (2012), the 

overall false alarm rate for the sequential procedure was .049. Thus, in many experiments, 

substantial position effects might not be expected. Here, however, the overall false alarm rate 

was .11 (i.e., responding was relatively liberal), which permitted large position effects to emerge. 

It is not clear why studies differ in the overall false alarm rate, but the fact that they do suggests 

that their empirically-measured discriminability results (in terms of partial area under the ROC) 

could differ in substantial ways for that reason alone.   

Basic Model Fits. In an earlier investigation of sequential position effects, Horry, Palmer 

and Brewer (2012) found that when participants were unaware of how many photos would be 

shown (their “backloading” conditions), not only did the DR remain constant for positions 2 vs. 

6 (see their Table 1), as we found here (Table 2), but so did underlying psychological 

discriminability (d'). However, instead of performing ROC analysis, they computed d' from a 

point estimate of the overall correct and false ID rates using a version of signal detection theory 

that assumes an “integration” decision rule (Duncan, 2006). The integration model holds that 

participants choose the MAX face in the lineup if the sum of the memory signals generated by 

the 6 faces in the line exceeds a decision criterion. Recently, Wixted et al. (2018) found that the 

integration model generally provides an extremely poor fit to empirical ROC data from 

simultaneous lineups (see also Colloff, Wade, Strange & Wixted, 2018), and they recommended 
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that the field finally abandon that model. Moreover, as noted by Kaesler, Semmler, and Dunn 

(2017), another problem with the integration model, as it has been used in the past, is that it is 

not cognizant of the stopping rule and so may not provide a viable estimate of d' for that reason 

alone (i.e., even if the integration decision rule were viable, which it does not appear to be). 

We next fit a signal detection model to the full set of data, collapsed across position. 

Importantly, we did not fit the Independent Observations model, according to which the face that 

generates strongest memory signal is identified so long as it exceeds the decision criterion (a 

model that makes sense for the simultaneous procedure). Instead, we fit the first-above-criterion 

model specified by Kaesler et al. (2017). This model is the appropriate signal detection model for 

a sequential lineup in which only the first positive ID counts. This model has up to 7 free 

parameters: µTarget, σTarget (both illustrated in Figure 1), and 5 confidence criteria (c1 through c5), 

corresponding to IDs made with confidence ratings > 0, > 20, > 40, > 60, and > 80. By 

convention, µFoil and σFoil were set to 0 and 1, respectively. The model was fit to the data using 

maximum likelihood estimation. We fit the model twice, first assuming a 6-parameter equal-

variance model and then allowing for σTarget to differ from σFoil. Goodness-of-fit was quantified 

by computing a χ2 value for the observed and predicted IDs for each level of confidence (and for 

observed and predicted non-IDs) for both target-present and target-absent lineups. The results are 

shown in Table 3. Clearly, an unequal-variance model (χ2 = 24.0) fit the data much better than an 

equal-variance model (χ2 = 107.5), χ2(1) = 83.5, p < .001, with the standard deviation of the 

target distribution estimated to be less than that of the lure distribution (i.e., σTarget < 1). This is in 

contrast to what is commonly observed in studies of list memory, where σTarget is usually greater 

than 1.0, with a typical value being 1.25 (e.g., Egan, 1958; Ratcliff, Shue, & Gronlund 1992; 

Wixted, 2007).  
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Why would the model yield an estimate of σTarget less than 1? One possibility is that it 

reflects the fact that although every subject saw the same target (namely, a photo of the person 

seen in the mock crime video), the fillers were randomly drawn from a large pool of description-

matched photos. Thus, the lure distribution, but not the target distribution, included item 

variance. It seems reasonable to suppose that selectively adding item variance to the fillers would 

result in a foil distribution with greater variance than would otherwise be the case. With enough 

item variance, the variance of the lure distribution would exceed the variance of the target 

distribution (as suggested by the best-fitting model). Yotsumoto, Kahana, McLaughlin, and 

Sekuler (2008) reported a similar result in a working memory task for visual textures. The task 

they used has some similarities to the task we used in that a small number of items were 

presented at study and test. Although their targets and foils both varied across trials, they 

proposed a summed-similarity account of recognition (implemented within a signal detection 

framework) that predicted that the variance of the memory-match signal generated by targets 

should be less than that generated by the foils. Thus, conceivably, the effect we observed here 

would be observed even if the target were varied across participants (i.e., even if every 

participant watched a different mock-crime video).  

 We next fit the model again, this time analyzing the data separately by position so that we 

could estimate whether µTarget changes as a function of position. As shown earlier in Figure 8A, 

the area under the ROC decreases substantially with increasing position. Is the same true of 

µTarget, which is a discriminability parameter (equal to d' in the equal-variance case)? We first fit 

a model in which µTarget was fixed across positions and then compared it to a model in which 

µTarget could differ between position 1 (µTarget1), effectively a showup, and the other six positions, 

for which µTarget was equated (µTarget2-6). The results (Table 4) demonstrated that the fit was 
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significantly improved by allowing µTarget to differ in this way, χ2(1) = 231.9 – 211.5 = 20.4, p 

< .001. Note that when discriminability was allowed to change as a function of sequential 

position, µTarget2-6 (1.60) was greater than µTarget1 (1.37), which means that underlying 

discriminability increased for the later sequential positions even though empirical 

discriminability (the area under the ROC curve) decreased. This result is consistent with 

diagnostic feature-detection theory (Wixted & Mickes, 2014) described earlier. However, the fit 

was not further improved by allowing µTarget to differ for positions 2 through 6. Diagnostic 

feature-detection theory would naturally predict an ever-increasing effect as participants come to 

better appreciate which facial features are non-diagnostic. These results indicate either that 

participants fully appreciated which features are non-diagnostic upon realizing that the face in 

position 2, like the face in position 1, also resembles the perpetrator or that some other 

explanation for the apparent increase in underlying discriminability applies. In any case, the data 

show no evidence of additional gains beyond position 2.   

We next allowed σTarget to also change between position 1 vs. positions 2-6 instead of 

holding it constant. Adding this parameter significantly improved the fit, χ2(1) = 211.5 – 204.6 = 

6.9, p = .009, and both µTarget and σTarget were found to increase as a function of position. Their 

estimated values were 1.42 and 0.62, respectively, for position 1, and 1.60 and 0.78, respectively, 

for positions 2-6. Using these values to compute de (a d'-like discriminability measure that takes 

into account unequal variances) yields 1.58 for position 1 and 1.70 for positions 2 through 6 

(Macmillan & Creelman, 2005). Using da (another d'-like discriminability measure that takes 

into account unequal variances) yields 1.71 for position 1 and 1.78 for positions 2 through 6.  

 For the analyses discussed thus far, the five confidence criteria were fixed across the six 

positions, but it seems possible that, in truth, they would differ across positions. We therefore 
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next allowed the five confidence criteria to shift in lockstep for each of the six positions. This 

analysis added five additional parameters, one for each position 2 through 6. Thus, for example, 

if the position 2 shift parameter were estimated to be 0.05, it would mean that all of the 

confidence criteria shifted 0.05 standard deviations in the conservative direction for position 2 

relative to position 1. Similarly, if the position 3 shift parameter were estimated to be -.05, it 

would mean that all of the confidence criteria shifted .05 standard deviations in the liberal 

direction for position 3 relative to position 1. We first performed this analysis with µTarget and 

σTarget fixed across positions. As shown earlier in Table 4, with µTarget and σTarget and the 

confidence criteria fixed across positions, the goodness-of-fit was χ2(83) = 231.9. When lockstep 

shifts of the confidence criteria was permitted, the fit of the model, χ2(78) = 195.6, was 

significantly improved, χ2(5) = 231.9 – 195.6 = 36.3, p < .001. The estimated criterion-shift 

parameters were 0.04, -0.09, -0.12, -0.02, and 0.03 for positions 2 through 6, respectively. Thus, 

although they shifted to a significant degree, the confidence criteria did not appear to shift in a 

very systematic way. When we next allowed µTarget to vary for position 1 vs. positions 2-6, the fit 

was again significantly improved, χ2(1) = 15.8, p < .001, with its value being higher for position 

1 (1.61) relative to the later positions (1.38). As before, allowing σTarget to also vary as a function 

of position improved the fit still further, χ2(1) = 7.4, p = .007. Using the estimated values of 

µTarget and σTarget to compute de and da yielded virtually identical values as those reported above 

for the fixed-criteria analysis.4  

 Model-free estimates of underlying discriminability. In all of the previous analyses, the 

ROC curves for later positions were dragged down because participants who made an ID early 

                                                 
4 We also allowed the confidence criteria to vary independently across positions, using 30 confidence parameters in 
all (5 for each position). The fit was significantly improved by the addition of these parameters, but no conclusions 
were affected. This version of the model is likely over-parameterized.  
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did not have the opportunity to make either a hit or a false alarm, but they still contributed to the 

denominator of the correct ID rate and the false ID rate. For applied purposes, all participants 

need to be included in the denominator because they are eyewitnesses who would be tested but 

would not have the opportunity to make a suspect ID. However, for theoretical purposes, it is 

worth separately considering the performance of only the subset of participants at each position 

who have not yet eliminated themselves because of a prior filler ID. For example, imagine that 

600 participants were presented with a target-present lineup containing the guilty suspect in 

position 3. If 200 made a previous filler ID, 200 others did not make a previous filler ID and 

made a correct suspect ID, and the remaining 200 did not make any ID in the first three 

positions, the position 3 hit rate would be 200 / 600 = .33. However, because of the stopping 

rule, only 400 participants had an opportunity to identify the suspect in position 3. For that subset 

of participants considered separately, the hit rate would be 200 / 400 = .50. Plotting the ROC 

data in this manner effectively removes the fundamental constraint imposed by the stopping rule 

and would allow any increase in discriminability as a function of position to be observed without 

having to fit a model.  

Using this approach, the area under the empirical ROC should now reflect underlying 

discriminability. Figure 9 shows the ROC curve for position 1 plotted against the ROC curve for 

positions 2-6 when considering only the subset of participants who have not yet made an 

identification prior to getting to each position. The ROC is visually lower for position 1 than it is 

for the later positions (consistent with the model fits).  

 We also performed this model-free area-under-the-curve analysis separately by the 

sequential position of the suspect. Specifically, we computed pAUC for each of the six ROCs 

computed in the manner described above, using the false alarm rate range covered by the 
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position-6 ROC (a range over which all six ROCs yielded hit- and false-alarm rate data). Figure 

10 shows the results. The figure also shows the mean pAUC (depicted by the solid horizontal 

line) and 95% confidence interval (depicted by dashed horizontal lines) computed using the 

pAUC values for positions 2 through 6. The results of this analysis correspond to the analyses 

reported thus far. That is, discriminability was higher (and essentially constant) for positions 2 

through 6 relative to position 1, the discriminability of which falls outside the range of the 

subsequent values. At a minimum, without relying on any model fitting, this analysis shows that 

psychological discriminability does not decrease as a function of sequential position – if 

anything, it increases, despite the fact that empirical discriminability (computed using the 

stopping rule) decreased dramatically over the same range (Figure 8A). 

 Reaction time data. The apparent increase in discriminability as a function of sequential 

position was predicted by diagnostic feature-detection theory, but it is obviously not the only 

possible explanation. Another possible explanation for the higher psychological performance for 

later positions is that participants change their speed-accuracy boundaries over the course of 

testing. According to the diffusion model, spreading out the decision boundaries would increase 

accuracy and also result in longer reaction times (Ratcliff, 1978). Table 5 shows median response 

times for the decisions made in each position. The data show that response times were longer for 

the first position than for later positions such that, if anything, changing decision boundaries 

worked against detecting an increase in discriminability as sequential position increased. In 

target present lineups, response times were significantly longer for position 1 than for position 6, 

t(3187) = 9.85, p < .001. In target absent lineups, response times were also significantly longer 

for position 1 than for position 6, t(3171) = 20.80, p < .001. Note that these are within-subject t-

tests because each participant made a response in position 1 (whether “yes” or “no”) and in 
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position 6. 

 We also performed an analysis of response times for the first “yes” decision to the 

suspect in target-present lineups and for the first “yes” decision to a filler in target-absent 

lineups. These are the “yes” responses used for the model-based analyses of underlying 

discriminability reported above (which show that, if anything, discriminability increased with 

later suspect positions). Figure 11 shows the relevant data. In both Figure 11A (target-present) 

and 11B (target-absent), the response time values for positions 2 through 6 were used to compute 

the average of the median response times (depicted by the solid horizontal line) and 95% 

confidence interval (depicted by dashed horizontal lines). In both cases, the median response 

time for position 1 fell above the range of the subsequent response times. Thus, we infer that the 

increased in underlying discriminability for positions 2-6 relative to position 1 did not occur 

because participants allowed more information to accumulate before responding in the later 

positions.   

Sequential dependencies. The signal detection model we fit to the data does not take into 

consideration the possibility that how participants responded on earlier positions influenced how 

they responded on later positions. For example, once participants make an ID, they may be 

hesitant to make a subsequent ID because they think they have already identified the guilty 

person, and there can be only one guilty person. We explored this possibility by examining the 

average confidence rating to fillers before and after a target was identified in target-present 

lineups and to fillers before and after another filler was identified in target-absent lineups. In 

other words, we examined how responding changed immediately after making a first positive 

identification.  

This analysis revealed the existence of sequential dependencies. That is, in both target-
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present and target-absent lineups, participants were more likely to declare that a subsequent filler 

was not the perpetrator (i.e., they became more conservative) after making an identification than 

before making an identification. Table 6 shows the average confidence ratings given to the filler 

immediately before and immediately after responding “ID” or “No ID.” The difference between 

the before and after ratings differed significantly depending on whether a suspect was identified 

or not identified, t(1288) = 5.09, p < .001. The difference between the before and after ratings 

also differed significantly depending on whether a filler was identified or not identified, t(7841) 

= 4.69, p < .001. Thus, not surprisingly, participants effectively became more conservative after 

making a first identification.                                         

The signal detection model we used predicts that the first-identification-only rule itself is 

what creates the empirical position effects we observed (i.e., decreasing area under the ROC with 

increasing sequential position). According to this model, if the highest-confidence ID is counted 

instead of only counting the first ID, these artificially-induced position effects should no longer 

be apparent (i.e., the ROCs from each position would fall atop one another). However, as just 

noted, due to sequential dependencies in responding, participants were less likely to make a 

subsequent identification after making an initial identification. This suggests that position effects 

similar to those created by the first-identification-only rule may still be present even when the 

stopping rule is eliminated and each participant’s highest-confidence ID is counted as the ID. 

Indeed, Figure 12 shows the same general pattern of position effects when the highest-

confidence ID is counted rather than counting the first-ID. Position effects are clearly attenuated 

compared to when the stopping rule is in effect, but a self-imposed stopping rule (i.e., reluctance 

to make another ID if one was already made) still creates clear position effects, with empirical 

discriminability being lower for the later sequential positions. Partial area under the curve 
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analysis over the false ID rate range covered by the position 6 data revealed that the difference 

between position 1 (pAUC = 0.033) and position 6 (pAUC = 0.026) was significant, D = 2.53, p 

= .012. We found essentially the same pattern if each position is treated as a showup (counting 

suspect IDs regardless of whether a previous ID was made). 

Discussion 

 The structural constraints of the sequential procedure that are imposed by the stopping 

rule create a situation wherein empirical discriminability (i.e., the area under the ROC curve) 

differs from underlying discriminability. Having seen a previous face improves eyewitnesses’ 

ability to discriminate innocent from guilty suspects. This can be best appreciated when the data 

are fit using a model that is cognizant of the underlying structure of the test. The observation that 

underlying discriminability is higher for later positions, however, does not mean that police who 

use a sequential lineup with a first-identification-only rule should place the suspect in a later 

lineup position. In fact, the recommendation to policymakers that follows from this experiment 

would be exactly the opposite because empirical discriminability can drop off dramatically as the 

suspect appears in a later lineup position.   

 No matter how the data are analyzed, the results indicate that underlying discriminability 

was higher for suspect positions 2 through 6 relative to suspect position 1, a finding that was 

predicted by diagnostic feature-detection theory. However, the results do not offer definitive 

support of this theory. First, even though the increase in discriminability was apparently real, the 

effect was very small and likely would not even be detected unless a large number of participants 

were tested (as they were in this experiment). Second, the most straightforward prediction based 

on this theory is that discriminability should increase in continuous fashion with each sequential 

suspect position as participants accumulate knowledge about which features are non-diagnostic. 
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Yet, a step function was observed instead. As such, it seems possible that the increase in 

discriminability for the later positions reflects an orientation effect. That is, conceivably, 

participants were both slow and diagnostically inefficient when making a decision about the first 

face in the lineup, but they were better oriented to the task after that (and so responded more 

efficiently and effectively over the subsequent positions). Whatever the explanation, the key 

point is that underlying discriminability was higher for the later suspect positions, in sharp 

contrast to empirical discriminability, which exhibited the opposite effect.     

 Although underlying discriminability apparently increases for later lineup positions, the 

fact that empirical discriminability decreases by position suggests that a sequential lineup might 

be expected to perform worse than a showup. Fundamentally, a showup is a sequential lineup 

with the suspect in the first position. The only real difference between the two procedures is that 

when eyewitnesses see the face in the first position of a sequential lineup, they know they will 

view additional faces afterwards, whereas with a showup, eyewitnesses know that they will view 

only a single test face. Showups are often called suggestive because they “suggest” that the face 

being tested is likely to be the guilty suspect (Dysart & Lindsay, 2012). Therefore, showups 

would be expected to result in more liberal responding than sequential lineups, but using the 

sequential procedure (rather than a showup) may not enhance empirical discriminability. In fact, 

as noted above, the countervailing force of increased underlying discriminability for later suspect 

positions is quite small and therefore seems unlikely to appreciably counteract the more 

pronounced negative force exerted by the stopping rule on empirical discriminability as suspect 

position increases. In our second experiment, we directly compared a showup to the sequential 

lineup. 
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Experiment 2 

Method 

Participants 

 A total of 4398 subjects completed the task on MTurk, but some answered the attention-

check question incorrectly and were excluded, leaving a total of 3919 participants. Of those, 

1966 were randomly assigned to the sequential lineup condition, (999 were presented with a 

target-present lineup and 967 with a target-absent lineup) and 1953 were randomly assigned to 

the showup condition (980 were presented with a target-present showup and 973 with a target-

absent showup). Participants were each paid $0.25 for completing the task. 

Materials  
 
 The materials were identical to those used in Experiment 1.   

Procedure 

 For the participants tested with a sequential lineup, the procedure was exactly the same as 

it was in Experiment 1. For the participants tested with a showup, the study phase and distractor 

task were the same, except that they were informed they would see only a single face at test. 

Results 

 Figure 13 displays the empirical ROC curves for the showup vs. the sequential lineup 

(collapsed across position). Note that the showup curve represents positive IDs only (i.e., the 

curve could have been extended to the upper right corner by including showup rejections, as is 

typically done with old/new ROC data). Obviously, the sequential lineup did not yield a higher 

area under the curve than the showup. If anything, the trend is slightly in the opposite direction, 

though the partial area under the curve over the range covered by the sequential procedure 

(namely, FAR = 0 to FAR = .114) did not differ significantly from that of the showup. It is 



Running head: Making Sense of Sequential Lineups 41 

apparent in Figure 13 that the overall hit and false alarm rates for the showup considerably 

exceed the corresponding values for the sequential lineup (rightmost ROC point for each 

procedure). This is consistent with the idea that showups are “suggestive.” For the showup, the 

overall hit and false alarm rates were .863 and .255, respectively (DRShowup = 3.39). The 

corresponding values for the sequential procedure were .518 and .114, respectively (DRSequential = 

4.56). Thus, using the DR to gauge the diagnostic accuracy of an identification procedure, as 

researchers did for many years, one would judge the sequential lineup to be superior to the 

showup. However, according to these data, the use of a showup in conjunction with a 

conservative decision criterion could achieve a lower false alarm rate and the same (if not 

higher) hit rate compared to the sequential procedure.   

Then again, the sequential ROC curve is affected by the overall decision criterion, which 

was relatively liberal in this experiment. The more liberal the overall decision criterion, the lower 

the confidence-based ROC for the sequential procedure will be. By contrast, the showup is 

represented by a single ROC curve, because it follows the standard rules wherein becoming more 

liberal or conservative in responding simply creates another point on the same ROC curve. How 

would the showup ROC compare to the lineup ROC if a more conservative decision criterion had 

been used?  

Before addressing that question, Figure 14 presents the empirical ROC curves for three 

different decision criteria, with the binary ROC shown in Figure 14A for three different overall 

decision criteria (> -80, > 0, and > 80), and the corresponding confidence-based ROCs shown in 

Figure 14B. These data largely replicate the findings of Experiment 1. 

Figure 15 reproduces the data in Figure 14B along with the showup data shown earlier in 

Figure 13. Interestingly, and as would be expected, if responding is conservative enough, the 
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points on the sequential ROC overlap with the points for the showup. Thus, at least according to 

this analysis, sequential lineups can certainly achieve more conservative responding and a higher 

DR than showups computed from overall hit and false alarm rates, but they may not necessarily 

achieve higher empirical discriminability when a fair lineup is used.  

 Model fits. In terms of underlying discriminability, the showup and overall sequential 

lineup yielded similar results. As shown in Table 7, µTarget was nearly identical for the two 

procedures, and σTarget less than 1 in both cases. When µTarget and σTarget were constrained to be 

equal for the two procedures, the overall chi-square goodness-of-fit statistic did not increase 

significantly, χ2(2) = 4.20, p = .122. In addition, when we fit the sequential data separately by 

position, there were no significant differences between position 1 and the later positions in terms 

of µTarget. Note that Experiment 2 was not designed to detect significant position effects, whereas 

Experiment 1 was, using more than three times as many participants. Experiment 2 was designed 

to compare the sequential procedure to the showup procedure and may not have had the 

statistical power to detect significant position effects on d' that might exist. 

General Discussion 

 The sequential lineup is widely used by the police in the U.S., but it is not well 

understood theoretically. The theory most often associated with the sequential procedure holds 

that it promotes “absolute” decisions by focusing attention on a face presented in isolation 

instead of encouraging witnesses to compare that face to the other faces in the lineup (as a 

simultaneous procedure does). As originally conceived (Wells, 1984), this was a theory of 

response bias. That is, theoretically, the simultaneous presentation of faces biases eyewitnesses 

to choose the most familiar face in the lineup even if that face does not match the witness’s 

memory of the perpetrator very well. By contrast, the presentation of faces in isolation 
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theoretically reduces that bias to choose, resulting in lower hit and false alarm rates (and 

increasing the DR). However, because response bias can be easily manipulated without 

switching lineup procedures, a more interesting question concerns the effect of sequential lineups 

on discriminability compared to other identification procedures.  

 Empirical vs. Underlying (Psychological) Discriminability. Previous studies comparing 

simultaneous lineups, sequential lineups, and showups have generally found that the partial area 

under the ROC curve (i.e., empirical discriminability) is greatest for simultaneous lineups 

(Mickes & Gronlund, 2017). Diagnostic feature-detection theory (Wixted & Mickes, 2014) holds 

that these findings reflect the advantage conferred by simultaneous lineups with respect to the 

detection of non-diagnostic facial features. In other words, it holds that empirical discriminability 

is higher for simultaneous lineups compared to sequential lineups and showups because 

underlying psychological discriminability is higher for simultaneous lineups. However, the 

results reported here show that structural constraints associated with the sequential presentation 

of faces can reduce the area under the ROC curve for that procedure even if psychological 

discriminability (underlying d') is unaffected, as predicted by Rotello and Chen (2016).  

Our findings provide a clear demonstration that psychological and empirical 

discriminability need not agree with each other (Wixted & Mickes, 2018). In fact, they can go in 

opposite directions, as they did here. Earlier, we showed that the simplest signal detection model 

of sequential lineup performance predicts that empirical discriminability (pAUC) should 

decrease as the position of the suspect in the sequential lineup increases (Figure 6A) even if 

underlying discriminability (d') remains constant across suspect positions. We confirmed that 

prediction in Experiment 1 (Figure 8A). At the same time, diagnostic-feature-detection theory 

predicts that underlying discriminability should increase as the position of the suspect in the 
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sequential lineup increases. Psychological discriminability is predicted to increase because 

seeing prior faces should teach eyewitnesses that the faces in the lineup share features. Because 

such features are non-diagnostic (precisely because they are shared by everyone in the lineup), 

discounting them enhances the ability to discriminate between innocent suspects/fillers and 

guilty suspects. One way to detect increased discriminability by position, if it exists, is to fit a 

model to the data that is cognizant of the structural constraint imposed by the stopping rule in the 

sequential procedure (Kaesler et al., 2017). Indeed, when such a model is fit to our data, the 

results show that psychological discriminability increased as a function of suspect position 

(Table 4) despite the decreasing empirical discriminability as a function of suspect position.  

The increase in underlying psychological discriminability with increasing suspect 

position was fairly small and likely would not have been detected had we not tested a large 

number of participants in Experiment 1. Indeed, the effect was not detected in Experiment 2, 

which tested only about one-third the number of participants tested using the sequential 

procedure in Experiment 1. Although small, the effect seems real because it is apparent no matter 

how the data are analyzed, including using a model-free method where pAUC ought to reflect 

underlying psychological discriminability because the constraint imposed by the stopping rule 

was removed (e.g., Figure 10). We investigated the effect of suspect position on underlying 

discriminability because it was predicted by diagnostic feature-detection theory (Wixted & 

Mickes, 2014). Although the data support that theory, the small size of the effect may indicate 

that the discounting of non-diagnostic features is much less pronounced when faces are presented 

sequentially compared to when they are presented simultaneously. Alternatively, given the step-

function nature of the increase in psychological discriminability from position 1 to positions 2-6, 

the results may not reflect the discounting of non-diagnostic features at all and may simply 
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indicate that participants became better oriented to the task after making a decision to the first 

face in the lineup. Regardless of which explanation applies, the results demonstrate that 

empirical discriminability and underlying psychological discriminability can be affected in 

opposite ways. 

“Filler siphoning” and the effect of response bias on the sequential ROC. Our main 

findings were based on analyses that assumed a neutral response bias, but we also investigated 

the effect of liberal and conservative response biases on the empirical ROC data generated by the 

sequential procedure. By artificially manipulating the overall decision criterion for counting IDs 

(as illustrated in Figure 5), we found that changing response bias can magnify or minimize 

effects of sequential position on empirical discriminability. When we used a liberal criterion, 

position effects were magnified, but when we used a conservative criterion, they were all but 

eliminated (Figure 8). Although we did not manipulate overall response bias across conditions 

using instructions, we predict that the same effects would be observed using that approach (to the 

extent that the instructions successfully manipulated response bias). 

The fundamental constraint that reduces empirical discriminability for later suspect 

positions in the sequential lineup is that fillers that appear before the suspect in the lineup and 

that happen to generate an above-criterion memory signal effectively terminate the procedure, 

thereby preventing guilty suspect IDs that might have otherwise occurred. Expressed in language 

that is sometimes used in the eyewitness identification literature, the constraint imposed by the 

use of sequential lineups in conjunction with a stopping rule is caused by “filler siphoning” 

(Wells, Smalarz, & Smith, 2015; Smith, Wells, Lindsay, & Penrod, 2016). Filler siphoning refers 

to the fact that the presence of fillers in simultaneous or sequential lineups reduces the number of 

suspect IDs that would occur in their absence.  
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Filler siphoning is usually considered to be a beneficial phenomenon because, compared 

to a showup, fillers in a simultaneous lineup draw IDs away from innocent suspects to a greater 

extent than guilty suspects (e.g., Smith, Wells, Smalarz & Lampinen, 2018). This is another way 

of saying that filler siphoning has the effect of increasing the DR for lineups compared to 

showups, just as the use of a more conservative response criterion would (Colloff et al., 2018). 

Thus, as currently construed, the apparently beneficial effect of filler siphoning (namely, an 

increase in the DR) is exactly the same effect that was once thought to indicate a sequential 

superiority effect. However, just as a higher DR resulting from more conservative responding 

does not reflect superior empirical discriminability (e.g., in a comparison of relatively liberal 

simultaneous lineups vs. relatively conservative sequential lineups), a higher DR resulting from 

filler siphoning also does not reflect superior empirical discriminability (e.g., in a comparison of 

showups, which have no fillers, vs. simultaneous or sequential lineups, which do). As noted by 

Colloff et al. (2018), filler siphoning could increase the DR whether empirical discriminability, 

as measured by ROC analysis, increased, decreased or remained unchanged (just as is true of 

more conservative responding). 

Not only is the effect of filler siphoning not necessarily beneficial in terms of empirical 

discriminability, it is clearly detrimental in the case of sequential lineups. If a filler happens to 

generate a relatively weak memory signal that barely surpasses a liberal decision criterion, the 

filler will be identified (presumably with low confidence), thereby canceling the opportunity to 

identify the guilty suspect in a later position, who might have generated a much stronger memory 

signal. The effect of filler siphoning, which exerts downward pressure on the empirical ROC for 

later sequential positions, can more than cancel any positive effect of increasing underlying 

psychological discriminability that might occur as a function of sequential position. That clearly 
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occurred in our Experiment 1, where the empirical ROCs showed no sign of increasing 

discriminability as a function of suspect position (instead, it monotonically decreased) despite 

the fact that underlying discriminability increased. The detrimental effect of filler siphoning on 

empirical discriminability may explain why the sequential procedure did not outperform and 

instead slightly but non-significantly underperformed the showup procedure in Experiment 2 

(Figure 13).  

Interestingly, and somewhat surprisingly, for fair lineups of the kind we used here, there 

is no evidence anywhere in the scientific literature that sequential lineups yield higher empirical 

discriminability than showups. Sequential lineups clearly do elicit much more conservative 

responding than showups, thereby increasing the DR. In the past, this result has been mistakenly 

interpreted to mean that sequential lineups are superior to showups. However, as noted above, 

this result may instead simply reflect the fact that sequential lineups induce more conservative 

responding than showups, as was true in Experiment 2 here (see Figure 13). Indeed, the DR was 

substantially higher for the sequential procedure (DRSequential = 4.56 vs. DRShowup = 3.39) even 

though empirical discriminability was slightly lower.  

Unfair lineups reduce filler siphoning. The sequential procedure’s filler-siphoning 

constraint occurs only to the extent that fillers generate a memory signal that exceeds the 

decision criterion. Having a conservative criterion decreases the chances that a filler will exceed 

the criterion, minimizing position effects on empirical discriminability (Figure 8C), but another 

factor that can reduce filler siphoning is the use of fillers that do not resemble the perpetrator. In 

the extreme, for example, if only the suspect (innocent or guilty) closely matched the description 

of the perpetrator, then filler IDs would be rare. Under such conditions, participants would more 

often have the opportunity to identify the guilty suspect, even if the suspect was positioned late 
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in the lineup. Imagine, for example, that the mock-crime video depicted a perpetrator who was a 

clean-shaven White male in his early 20s with short dark brown hair. If the fillers generally 

matched that description except that they were all in their 50s, then they would provide some 

useful information about non-diagnostic features (e.g., they would reveal that short dark brown 

hair is not diagnostic of guilt), but they would be unlikely to be identified because they are too 

old. Thus, filler siphoning would be effectively eliminated. Under such conditions, any increase 

in underlying psychological discriminability might show up as an increase in empirical 

discriminability for the later suspect positions.  

These considerations may help to explain why two previous studies have reported 

significantly increased empirical discriminability for later sequential lineup positions (Meisters, 

Diedenhofen & Musch, 2018; Gronlund et al., 2012). Both of these studies used unfair lineups in 

which fillers were less likely to be identified than the designated innocent suspect in the target-

absent lineup. Thus, the fillers were less likely to generate a memory signal strong enough to 

exceed the decision criterion (as illustrated in Figure 16). Using 6-person sequential lineups, 

Gronlund et al. (2012) found that pAUC for position 5 (0.141) significantly exceeded pAUC for 

position 2 (0.092). This increase in empirical discriminability presumably reflects a 

corresponding increase in underlying psychological discriminability that was not counteracted by 

filler siphoning. The same result was reported in a recent study by Meisters, Diedenhofen and 

Musch (2018), who also tested unfair lineups in which filler IDs were rare. In their 4-person 

sequential lineups, pAUC for position 4 (0.10) was significantly higher than it was for position 1 

(0.05). By contrast, in fair lineups of the kind we tested here (where filler siphoning would be 

expected to occur and in fact did frequently occur), any increase in underlying psychological 

discriminability as a function of suspect position is apparently swamped by the negative effect of 
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filler siphoning on empirical discriminability.  

Because underlying psychological discriminability (measured by d') and empirical 

discriminability (measured by pAUC) need not necessarily agree with each other, it is important 

to know which measure answers the question of interest (Wixted & Mickes, 2018). Both types of 

discriminability are important, but it is essential to appreciate when each is important. When the 

question pertains to a prediction made by a theory, such as diagnostic feature-detection theory, a 

model is needed to measure underlying psychological discriminability (d'). But when the 

question concerns application in the real world, only empirical discriminability, measured by 

pAUC, is relevant (Wixted & Mickes, 2018).  

Applied Considerations. The idea that underlying psychological discriminability is of no 

interest to policymakers is not intuitive, but the data we report here illustrate why it is so. For 

example, if a suspect is placed in position 6 of the sequential procedure and a stopping rule is 

used, it would be no consolation to know that psychological discriminability may be higher for 

that position compared to position 1. The fact that empirical discriminability is low for the last 

position means that, for applied purposes, routinely placing suspects in position 6 would be a bad 

idea. For applied purposes, the goal of any eyewitness identification procedure is to maximize 

empirical discriminability. Higher empirical discriminability both reduces the likelihood that 

innocent suspects will be misidentified (and possibly wrongfully convicted) and increases the 

likelihood that guilty suspects will be prevented from committing future crimes.   

Remarkably, approximately 30% of more than 15,000 U.S. police departments have 

adopted the sequential lineup procedure (Police Executive Research Forum, 2013) even though it 

is not yet well understood at a theoretical level. Only recently have researchers begun to 

understand the fundamental constraints on empirical discriminability created by the sequential 
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procedure. Our findings provide an empirical demonstration of these constraints. Rotello and 

Chen (2016) were the first to theoretically identify the constraint, and it was clearly evident in 

our empirical data even when a neutral decision criterion was used (Figure 8A). Using the same 

basic signal detection model that they did, we predicted (Figure 6) and documented (Figure 8) 

further constraints on empirical discriminability as a function of the suspect’s position in the 

sequential lineup. These findings seem significant because, in the original study that introduced 

the sequential procedure, Lindsay and Wells (1985) stated that “[f]or sequential lineup 

presentation to be a viable alternative [to simultaneous presentation], it is important that the 

results of the procedure not be unduly influenced by order effects (i.e., the position of the 

suspect)” (p. 561). The present research demonstrates how large an influence the position of the 

suspect can have on discriminability and how that effect can be masked by relying on a 

dependent measure like the DR (e.g., see the DR values in Table 2, which remain essentially 

constant as a function of suspect position).  

Most of the problems with the sequential procedure arise because of the standard 

stopping rule used in laboratory research. It is not clear how often police use this stopping rule in 

actual practice (e.g., Steblay et al., 2011, noted that they are unaware of any jurisdiction that 

does), but given its deleterious effect on empirical discriminability, the police would probably be 

wise not to follow the first-identification-only stopping rule. However, even if they do not use 

the stopping rule, the data shown in Figure 12 (where the highest-confidence ID was used rather 

than the first ID) suggest that sequential lineups can still lead to deleterious position effects on 

empirical discriminability. If fair sequential lineups do not yield higher discriminability than 

showups, and if they yield lower empirical (not to mention psychological) discriminability than 

simultaneous lineups, the argument in favor of police switching to the sequential procedure is 
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hard to fathom. The larger implication may be that before advocating major changes to existing 

policy, scientists should have a deep theoretical understanding of any proposed reform, one that 

is as grounded in basic research as it is in applied research. 
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Table 1 

Overall hit and false alarm rates (i.e., the rightmost ROC points) and their corresponding 

diagnosticity ratios for the simulated ROC curves shown in Figure 6A. 

 

 

 

 

 

 

 

  

Position HR FAR DR 
1 0.79 0.18 4.44 
2 0.65 0.15 4.33 
3 0.54 0.12 4.69 
4 0.44 0.10 4.62 
5 0.36 0.08 4.50 
6 0.30 0.06 4.63 
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Table 2  

Overall hit and false alarm rates (i.e., the rightmost ROC points) and their corresponding 

diagnosticity ratios for the empirical ROC curves shown in Figure 8A. 

  

Pos HR FAR DR
1 0.82 0.18 4.52
2 0.64 0.13 5.08
3 0.54 0.13 4.08
4 0.47 0.11 4.09
5 0.34 0.07 4.61
6 0.29 0.05 5.67
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Table 3 

Optimal parameter estimates for the fits of the equal-variance and unequal-variance signal 

detection models to the data (collapsed across positions) from Experiment 1. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Parameter Equal Variance Unequal 
Variance 

µTarget 1.63 1.56 

σTarget  0.71 0.71 
c1 0.91 0.92 
c2 0.94 0.95 
c3 1.03 1.04 
c4 1.23 1.22 
c5 1.75 1.71 
χ2 107.5 24.0 
df 9 8 
p 0.000 0.002 
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Table 4  

Optimal parameter estimates for the fits of the constant-discriminability and changing-

discriminability signal detection models to the data (not aggregated across positions) from 

Experiment 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

Parameter Constant 
Discriminability 

Changing 
Discriminability 

µTarget1 1.54 1.37 

µTarget2-6 1.54 1.60 

σTarget  0.73 0.73 
c1 0.92 0.92 
c2 0.95 0.95 
c3 1.04 1.04 
c4 1.22 1.22 
c5 1.70 1.70 
χ2 231.9 211.5 
df 83 82 
p 0.000 0.000 

Note. The degrees of freedom are large in this 
case because the model is fit to multiple data 
cells for each position.  
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Table 5 

Average response times for each position in target present and target absent lineups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Running head: Making Sense of Sequential Lineups 62 

Table 6  

Average confidence ratings given to the filler immediately before and immediately after 

responding “ID” or “No ID.” 

 

 Before After Difference 
Suspect "ID" -74.3 -80.7 6.4 
Suspect "No ID" -66.2 -60.7 -5.5 
Filler "ID" -70.9 -54.4 -16.5 
Filler "No ID" -72.7 -47.9 -24.8 
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Table 7  

Optimal parameter estimates for the fits of the unequal-variance signal detection models to the 

showup data and the sequential (SEQ) lineup data (collapsed across positions) from Experiment 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Parameter Showup SEQ Lineup 

µTarget 1.58 1.60 

σTarget  0.90 0.73 
c1 0.62 1.03 
c2 0.69 1.02 
c3 0.86 1.11 
c4 1.16 1.26 
c5 1.85 1.69 
χ2 7.0 11.5 
df 3 8 
p 0.071 0.175 
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Figure 1. Simple equal-variance signal detection model. The distribution of foils has a lower 
memory match signal on average than the distribution of targets because the foils have not been 
previously seen, whereas the targets have been previously seen. The vertical line represents one 
of many possible places where the decision criterion is placed. An item generating a memory 
match signal greater than the criterion will be identified as “old;” an item generating a memory 
match signal lower than the criterion will be identified as “new.”  
 
 

 

 

 

 

 

 

 

 

 

  



Running head: Making Sense of Sequential Lineups 65 

Figure 2. Confidence-based ROC data (A) and ROC data resulting from different biasing 
instructions in Mickes et al. (2017). 
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Figure 3. Simulated ROC data for the simultaneous and sequential lineup procedure as shown in 
Rotello and Chen (2016). 
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Figure 4. (A) Simple signal detection model with three different criteria used to simulate the 
ROC curves shown in B and C. (B) The binary ROC data that result from this simulation. (C) 
The confidence-based ROC data that result from this simulation. 
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Figure 5. Confidence scale ranging from -100 (sure the face was not seen) to +100 (sure this is 
the face of the perpetrator). The overall criterion for counting an ID, thereby canceling any later 
IDs that might occur in the lineup, can be set to a liberal, neutral or conservative point on the 
confidence scale. 
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Figure 6. Simulated ROC data when the suspect appears in each of the six positions in the lineup 
when responding is neutral (A), liberal (B), or conservative (C). 
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Figure 7. (A) The empirical binary ROC curves for the results of Experiment 1. (B) The 
empirical confidence-based ROC curves for the results of Experiment 1 
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Figure 8. Empirical ROC curves from Experiment 1 when the suspect appears in each of the six 
positions in the lineup when responding is neutral (A), liberal (B), or conservative (C). 
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Figure 9. ROC curve for position 1 plotted against the ROC curve for positions 2-6 when only 
considering the subset of participants who have not yet made an identification prior to getting to 
each position. 
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Figure 10. pAUC estimates for positions 1 through 6 when considering only the subset of 
participants at each position who have not yet made a prior identification. The solid horizontal 
line represents the mean value for the pAUC estimates for positions 2 through 6 (filled symbols), 
and the dashed horizontal lines represent the 95% confidence interval for those points. The 
pAUC estimate for positon 1 is shown as an open symbol. 
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Figure 11. Median response times for the first “yes” decision to the suspect in target-present 
lineups (panel A) and to a filler in target-absent lineups (panel B). The solid horizontal line 
represents the mean value for the median response times from positions 2 through 6 (filled 
symbols), and the dashed horizontal lines represent the 95% confidence interval for those points. 
The median response time for positon 1 is shown as an open symbol. 
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Figure 12. Empirical ROC curves for each position when the highest-confidence response is 
counted as an ID rather than the standard first-ID-only counting as an ID. 
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Figure 13. Empirical ROC curves for the showup vs. the sequential lineup in Experiment 2 
(collapsed across positions). 
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Figure 14. (A) The empirical binary ROC curves for the results of Experiment 2. (B) The 
empirical confidence-based ROC curves for the results of Experiment 2. 
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Figure 15. Empirical ROC curve for the showup and the sequential lineup for three different 
criteria. 
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Figure 16. Distributions of memory strength values for fair and unfair lineups. With a fair lineup, 
the innocent suspect and filler distributions are the same. With an unfair lineup, however, the 
filler distribution has a lower average memory strength than the innocent suspect distribution. 
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