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Abstract 

Face recognition memory is often tested by the police using a photo lineup, which consists of 

one suspect, who is either innocent or guilty, and five or more physically similar fillers, all of 

whom are known to be innocent. For many years, lineups were investigated in lab studies 

without guidance from standard models of recognition memory. More recently, signal detection 

theory has been used to conceptualize lineup memory and to motivate receiver operating 

characteristic (ROC) analysis of competing lineup procedures. However, this movement is still in 

its infancy. Here, we present three competing signal-detection models of lineup memory, derive 

their likelihood functions, and fit them to empirical ROC data. We also introduce the notion that 

the memory signals generated by the faces in a lineup are likely to be correlated because, by 

design, they share many features. The models we investigate differ in their predictions about the 

effect that correlated memory signals should have on the ability to discriminate innocent from 

guilty suspects. The best-fitting model incorporates a principle known as "ensemble coding," a 

concept that applies to the presentation of any set of similar items (including the faces in a 

lineup). The ensemble model also accords with a previously proposed theory of eyewitness 

identification according to which the simultaneous presentation of faces in a lineup enhances 

discriminability compared to when faces are presented in isolation because it permits 

eyewitnesses to detect and discount non-diagnostic facial features. 

 

  

Keywords: Eyewitness Memory; Confidence and Accuracy; ROC Analysis; Signal-Detection 

Theory; Showups; Lineups 
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Models of Lineup Memory 

Eyewitness misidentifications have contributed to a large number of wrongful 

convictions, and laboratory-based research designed to reduce that problem has focused largely 

on the format of lineups that the police use during the early stages of a criminal investigation 

(e.g., Lindsay & Wells, 1985). For many years, the relevant data were analyzed without any 

reference to the conceptual and analytical tools that are commonly used by cognitive 

psychologists to study recognition memory, but more recent research differs in that it has relied 

on signal detection theory to conceptualize and analyze receiver operating characteristic (ROC) 

data. However, thus far, competing signal detection models of eyewitness identification have not 

been formally specified and then tested for their ability to accurately characterize empirical data. 

The purpose of this article is to do just that.      

Although live lineups were once the norm, nowadays ~90% of lineups administered by 

the police in the U.S. are photo lineups (Police Executive Research Forum, 2013). Like a live 

lineup, a photo lineup consists of one suspect, who is either innocent or guilty, and several 

(usually five) physically similar fillers, all of whom are known to be innocent. Typically, the 

photos are presented simultaneously to the witness, who can (1) identify the suspect (suspect ID), 

(2) identify a filler (filler ID), or (3) reject the lineup (no ID). Alternatively, the photos can be 

presented sequentially, with the procedure terminating when the first positive ID is made 

(Lindsay & Wells, 1985). Here, we focus on theories of recognition memory tested using the 

simultaneous photo-lineup procedure. 

The lineup task is similar to a list-memory recognition task in many ways, but an 

important difference is that in a list-memory design, many different items are tested with one 

participant. By contrast, in a common lineup design, many different participants are tested with 
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one set of items. Thus, instead of different items contributing to the variance of the distribution 

of memory signals across trials, different participants do. Either way, one distribution of memory 

signals is generated by previously seen targets, and the other is generated by novel lures. In an 

eyewitness identification experiment, the targets are guilty suspects, and the lures are innocent 

suspects and fillers. Achieving a greater theoretical understanding of those two memory-strength 

distributions is the goal of this article, and we do so by testing the ability of three specific signal-

detection-based models of lineup memory to quantitatively characterize empirical ROC data. 

Background Theoretical Considerations 

 Before delving into modeling details, we consider several preliminary theoretical and 

empirical issues. First, we describe how lineup memory is generally conceptualized within a 

signal detection framework and how each of the three signal detection models we later consider 

is defined by its unique diagnostic memory-strength variable. We then briefly survey prior 

research on the diagnostic variable that participants appear to rely upon when memory is tested 

using a collection of test items. Lastly in this section, we introduce the key notion of correlated 

memory signals in lineups, the predicted effect of which differs depending on which model is 

correct. 

Modeling Lineup Memory using Signal Detection Theory  

The simplest signal detection model for simultaneous lineups was briefly mentioned by 

Macmillan & Creelman (1991, p. 251) in their classic signal-detection text and was considered in 

more detail by Duncan (2006) in a technical report. They both referred to this model as the 

Independent Observations model, as we will. According to this simple model, which we illustrate 

here in Figure 1, memory strength values for lures (innocent suspects and fillers) and for targets 

(guilty suspects) are distributed according to Gaussian distributions with means of µLure and 
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µTarget, and standard deviations of σLure and σTarget, respectively. The innocent suspect is, from the 

witness's point of view, just another filler (assuming, as we do, a fair lineup). Hence, there is 

only one lure distribution. A 6-member target-present lineup is conceptualized as 5 random 

draws from the lure distribution and 1 random draw from the target distribution, and a fair 6-

member target-absent lineup is conceptualized as 6 random draws from the lure distribution. For 

the equal-variance case, σTarget = σLure = σ, the ability to discriminate innocent from guilty 

suspects (d'IG) is given by d'IG = (µTarget - µLure) / σ.  

Note that, in the eyewitness context, d'IG is a population measure of discriminability, not 

a measure of discriminability for any particular participant. Eyewitness identification studies in 

the laboratory often involve a large number of once-tested participants (e.g., N = 1000). Each 

participant, if tested individually using a list-memory procedure, would presumably yield a 

different d' score, reflecting the fact that some participants have better memories than others. The 

range of memory ability across once-tested participants in an eyewitness identification 

experiment is one of many possible sources of the variance represented by σ2
Target and σ2

Lure. 

Other possible sources of variance include (for example) how much attention participants paid to 

the mock-crime video and how similar the perpetrator in the video is to someone previously 

known to the participants. 

In a signal detection model (Figure 1), confidence ratings correspond to different decision 

criteria. Assuming 5 different levels of confidence associated with an ID, there are 5 different 

confidence criteria. The parameters c1 through c5 in Figure 1 represent the confidence criteria for 

positive IDs of a suspect or a filler. According to the Independent Observations model, a witness 

first determines which face generates the strongest memory signal (the MAX face) and then 

identifies that face if its memory signal exceeds c1, without regard for the memory signals 
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generated by the other faces in the lineup. If the strength of the memory signal exceeds a higher 

criterion (e.g., c3), the ID is made with correspondingly higher confidence. Although confidence 

ratings are sometimes taken when the decision is to reject the lineup, our focus is on predicting 

confidence ratings associated with positive IDs, which are made in relation to a particular lineup 

member and which are used to evaluate the reliability of eyewitness identifications in courts of 

law.  

 The model illustrated in Figure 1 may be the simplest signal detection model for 

simultaneous lineups, but it is by no means the only one. The three models we investigate in this 

article differ in their assumptions about how the memory signals generated by the faces in a 

lineup are used to decide whether or not to identify the face that generates the strongest signal. 

We refer to these three models as the Independent-Observations model (Figure 1), the Integration 

model, and the Ensemble model. The diagnostic memory-strength variable for the Independent-

Observations model is the raw (untransformed) memory-match signal generated by a face in the 

lineup (Macmillan & Creelman, 2005); for the Integration model, it is the sum of the memory-

match signals generated by the faces in the lineup (Duncan, 2006); and for the Ensemble model, 

it is the difference between the memory-match signal for a given face and the average of the 

memory signals generated by all of the faces in the lineup. As described below, this model is a 

mathematical instantiation of the diagnostic feature-detection theory proposed by Wixted and 

Mickes (2014). 

All three models rely on a MAX decision rule. According to this rule, the face in the 

lineup that generates the strongest memory-match signal is identified if the relevant decision 
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variable exceeds a criterion; otherwise, the lineup is rejected (i.e., no ID is made).1 Table 1 

summarizes, for each model, the decision variable (i.e., the variable that is considered in relation 

to the various confidence criteria) and the decision rule associated with the MAX face in the 

lineup. Note that for all three models, the face that generates the strongest memory signal is the 

only face that is a candidate for being identified. The larger the magnitude of the decision 

variable, the more likely it is that the MAX face will be identified and the higher the 

eyewitness’s confidence in that ID will be. We focus on these three specific models because, as 

we show later, they have all been previously proposed (i.e., they are the currently competing 

signal detection models of lineup memory).  

Prior Research on the Nature of the Decision Variable 

What does prior research suggest about the nature of the diagnostic variable when 

memory is tested using a lineup? Studies from several domains that are relevant to this question 

have investigated the effect of adding implausible (i.e., “dud”) alternatives to a set of test items 

on confidence in decisions about the plausible (i.e., non-dud) alternatives in the set. According to 

the Independent Observations model, confidence is theoretically determined by the memory 

signal associated with the MAX face without regard for the other faces in the lineup. Thus, all 

else being equal, the addition of duds (which are very unlikely to generate the MAX signal) 

should have no effect on confidence. Contrary to that prediction, in the context of multiple-

choice general knowledge questions, Windschitl and Chambers (2004) found that the addition of 

implausible alternatives increased confidence in the plausible alternatives. Essentially the same 

result was found in an associative recognition task conducted by Hanczakowski, Zawadzka & 

                                                 
1 The MAX rule is often assumed to apply in visual search tasks involving target-present and target-absent arrays 
(e.g., Cameron, Tai, Eckstein & Carrasco, 2004; Palmer, Fencsik, Flusberg, Horowitz & Wolfe, 2011; Palmer, 
Verghese & Pavel, 2000; Smith & Sewell, 2013; Verghese, 2001). 
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Higham (2014) and in eyewitness identification studies conducted by Charman et al. (2011) and 

Horry and Brewer (2016).  

Windschitl and Chambers (2004) accounted for their finding in terms of a contrast 

hypothesis according to which adding duds increases the number of pairwise comparisons that 

strongly favor the most plausible alternative, thereby increasing confidence in that alternative. 

This account emphasizes the difference between the MAX (i.e., most plausible) item and the 

other items in the set, which is most similar to the diagnostic variable envisioned by the 

Ensemble model. Hanczakowski et al. (2014) extended this account based on Tversky’s (1977) 

idea that the local context determines which features in a set of stimuli are considered diagnostic 

for the task at hand. This account holds that it is the difference between a contextually plausible 

item — which is differentially associated with diagnostic features — vs. the other items in the set 

that serves as the diagnostic decision variable.  

Wixted and Mickes (2014) applied the same idea to lineup memory to explain why 

simultaneous lineups often yield higher discriminability than sequential lineups. Their diagnostic 

feature-detection theory holds that the simultaneous presentation of faces helps witnesses to 

notice and to then discount non-diagnostic facial features (namely, the features that are common 

across the lineup members). By focusing on potentially diagnostic features, the memory signal of 

the guilty suspect (the lineup member whose diagnostic features most closely match the 

witness’s memory of the perpetrator) will stand out from the crowd of signals associated with the 

other faces in the lineup. For present purposes, the key point is that these theoretical accounts all 

focus on a difference variable, just as the Ensemble model does.  

In light of these considerations, it seems fair to suggest that the prior odds favor the 

Ensemble model over the competing signal detection models. Then again, as noted by 
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Hanczakowski et al. (2014), the effects of duds on confidence could be explained without 

assuming a difference variable by instead assuming a criterion shift. According to this idea, when 

duds are added to the set, a more liberal decision criterion is used to express high confidence, a 

possibility they termed “recalibration.” One way to distinguish between that possibility and the 

alternative possibility that the diagnostic memory-strength variable truly consists of a difference 

variable is to fit the three competing models to empirical ROC data, which is what we do here.   

Correlated Memory Signals 

A final background theoretical issue to consider is the role of correlated memory signals 

in lineups. The memory signals in a lineup are likely to be correlated by virtue of the fact that the 

standard approach to creating lineups is to select one suspect and 5 fillers that correspond to the 

physical description of the perpetrator provided by the eyewitness. If the lineup-defining features 

of the perpetrator happen to generate a strong memory signal, then, because those features will 

be shared by everyone in the lineup, all of the faces in the lineup – not just the face of the 

perpetrator – will tend to generate a relatively strong memory signal as well (i.e., the mean 

memory signal of the faces in the lineup would be high). This might happen, for example, if the 

witness described the perpetrator as having a flamboyant handlebar mustache and shocking red 

hair, in which case everyone in the lineup would have those memorable features. By contrast, if 

the lineup-defining features associated with the perpetrator are not particularly distinctive (or if 

the features are distinctive but the witness did not get a good look at the perpetrator), the relevant 

features would likely be weakly encoded and would therefore generate a weak memory signal. In 

that case, all of the faces in the lineup would tend to generate a weak memory signal as well (i.e., 

the mean memory signal of the faces in the lineup would all be low).  
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Although the effect of correlated memory signals on lineup memory has not been 

previously considered, the fact that correlated signals can facilitate performance in 2-alternative 

forced-choice (2AFC) recognition memory has long been known (Hall, 1979; Hintzman, 1988, 

2001; Tulving, 1981). In a 2AFC task, participants are presented with a forced choice between a 

previously studied target and a novel lure, and they are instructed to choose the item that they 

believe to be the target. The optimal strategy on the 2AFC task is to base the decision on the 

difference between the memory signals generated by the target and the lure (Macmillan, 2002). 

Thus, for example, on every trial, the participants might compute the memory-strength difference 

between the item on the right and the item on the left and then choose the right item if the result 

is positive and choose the left item if the result is negative. For the typical case in which the 

memory strength of a target does not predict the memory strength of the lure (i.e., for the typical 

case in which the memory signals of the targets and lures are uncorrelated), the subtraction 

process would give rise to two distributions, one with a mean and variance of µTarget and σ2
Target + 

σ2
lure, respectively, and the other with a mean and variance of -µTarget and σ2

Target + σ2
lure, 

respectively. Discriminability on the 2AFC task is given by the difference between the two 

means divided by their common standard deviation, or 𝑑𝑑′ = 2𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ��𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 �� . The 

variances of the targets and lures in the denominator sum because when adding or subtracting 

uncorrelated random variables, the variance of the resulting random variable is the sum of the 

component variances.  

On some 2AFC tasks, the targets are paired with similar lures, in which case the memory 

signals of the targets and lures would be correlated. For example, a target might be a picture of a 

previously presented violin, and its corresponding similar lure might be a picture of a novel 

violin that shares many features with the target. Because the two test items share many features, 
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the memory-strength signals they generate will be correlated. Under those conditions, 𝑑𝑑′ =

2 �𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� ��𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 − 2𝜌𝜌𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒�� , where ρ is the correlation coefficient 

(Hintzman, 1988, 2001). We can simplify this equation by setting µLure = 0 and by assuming an 

equal-variance model such that σ2
Target = σ2

lure = 1. In that case, discriminability on the correlated 

2AFC task becomes 𝑑𝑑′ = √2 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (1− 𝜌𝜌)⁄ . This equation makes it clear that discriminability 

increases as ρ increases. As ρ approaches a perfect correlation of 1, discriminability tends to 

infinity. A perfect correlation means that the memory strength signals generated by the target and 

the lure on any given trial fall at precisely the same point on their respective distributions 

(Hintzman, 2001). For example, if the target on a given trial happens to fall 1 standard deviation 

below µTarget, then the lure will fall one standard deviation below µLure. So long as µTarget > µLure, 

when ρ = 1, the participant will correctly choose the target every time. 

We propose that correlated memory signals play a potentially important role not only in 

in 2AFC recognition memory but also in lineup memory. Moreover, there are two distinct parts 

to the story of how correlated memory signals may affect lineup memory. The first part is 

independent of the three models we consider, whereas the second part is model specific (i.e., the 

effect is different for each model). The first part of the story concerns the beneficial effect of 

correlated memory signals on target-present lineup performance, which happens to be the same 

benefit that occurs for the 2AFC task. For example, in a target-present lineup, if ρ = 1, so long as 

µTarget > µLure, the memory-strength signal generated by the target (the guilty suspect) will exceed 

the memory-strength signals generated by the lures every time. In other words, the target will 

always be the MAX face in the lineup. Because all three models assume a MAX decision rule, 

when ρ = 1, only the target would be a candidate for identification in target-present lineups. If its 

memory strength exceeds the decision criterion, the target will be correctly identified, but no lure 
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would ever be incorrectly identified. Thus, as described in more detail later, for all three models, 

d'TP (i.e., the ability to discriminate the guilty suspect from the lures in a target-present lineup) 

tends to infinity as ρ approaches 1. By contrast, in fair target-absent lineups, the ability to 

discriminate the innocent suspect from the fillers is, by definition, equal to 0 (i.e., d'TA = 0) 

because the innocent suspect is effectively another filler. 

Lineup performance is not determined solely by what happens on target-present trials but 

also by what happens on target-absent trials. Thus, to fully predict lineup performance across all 

lineups, it is also important to consider d'IG, the aggregate ability of eyewitnesses to discriminate 

innocent suspects in target-absent lineups from guilty suspects in target-present lineups. Unlike 

d'TP, which always increases as ρ increases, the effect of correlated memory signals on d'IG 

differs for the three competing models under consideration here. This is the second part of the 

story of correlated memory signals on lineup memory. As described next, a positive correlation 

between memory signals in a lineup should have no further effect on d'IG according to the 

Independent Observations model, it should exert a negative effect according to the Integration 

model (decreasing d'IG), and it should exert a further positive effect (increasing d'IG) according to 

the Ensemble model. Critically, it is the combined effect on d'TP and d'IG (two measures of 

underlying discriminability) that determines the effect that correlated memory signals have on 

the empirical discriminability as revealed by ROC data (Wixted & Mickes, 2018). 

Three Models of Lineup Memory 

In this section, we formally derive the predictions that these three models make about d'IG 

(the ability to discriminate innocent from guilty suspects) when memory signals are uncorrelated 

and when they are correlated. After the models are formally specified, in subsequent sections, we 

derive the likelihood functions for each model and then fit the models to empirical ROC data. 
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Independent Observations Model 

According to the Independent Observations model, the memory signals generated by 

innocent and guilty suspects (and fillers) are considered without regard for the memory signals 

generated by the other faces in the lineup. This simple model is similar to the BEST model 

implemented by Clark (2003; Clark, Erickson & Breneman, 2011) in the context of the 

WITNESS model and has often been used to frame a recent debate about the utility of ROC 

analysis in eyewitness identification (e.g., Lampinen, 2016; Rotello & Chen, 2016; Smith, Wells, 

Lindsay, & Penrod, 2017; Wixted, Mickes, Wetmore, Gronlund & Neuschatz, 2017). As 

depicted in Figure 1, the mean signal generated by guilty suspects and innocent suspects would 

be µTarget and µLure, respectively, and their corresponding standard deviations would be σTarget and 

σLure, respectively. Note that here and throughout this article, µTarget and µLure represent the means 

of the raw (untransformed) memory distributions for targets and lures, respectively. Assuming an 

equal-variance model (σTarget = σLure = σ), discriminability based on performance aggregated 

across all lineups is given by d'IG = (µTarget - µLure) / σ.2 By convention, we set µLure = 0, so the 

numerator of the d'IG equation reduces to µTarget, and we set σ = 1 in the denominator, so the 

ability to discriminate innocent from guilty suspects reduces to the simple equation: 

d'IG = µTarget          (1)  

The Independent Observations model further assumes that on a given trial, a decision is based on 

the face in the lineup that generates the maximum (MAX) memory strength signal.  

                                                 
2 We assume an equal-variance model mainly for simplicity. List-memory studies of recognition memory usually 
support an unequal-variance model (greater variance for the target distribution), but, as we show later, lineup data 
are often consistent with an equal-variance model (or an unequal-variance model in the opposite direction, with 
greater variance for lures). 
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Our concern for the moment is what the Independent Observations model predicts about 

the memory-strength signals generated by targets and lures (i.e., about d'IG) before a decision is 

made using the MAX rule. The specific question of interest is how d'IG should be affected by the 

presence of positively correlated memory signals according to this model, and the answer is that 

it should not be affected at all. The reason is that, according to this model, the memory signals 

generated by the faces in the lineup are considered without regard for the memory signals 

generated by the other faces in the lineup. Regardless of the size of the correlation, the targets are 

drawn from a distribution with mean µTarget and standard deviation σTarget, and the foils are drawn 

from a distribution with mean µLure and standard deviation σLure. Thus, in the equal-variance case 

(σTarget = σLure = σ), d'IG = (µTarget - µLure) / σ, and this is true whether ρ equals 0 or 1 or anything 

in between. Setting µLure = 0 and σ, = 1, this equation reduces to Equation 1 regardless of ρ. 

Using simulated data, Figure 2 illustrates the effect of increasingly correlated memory 

signals for the Independent Observations model in which µTarget = 2, µLure = 0, and, assuming 

equal variance, σ = 1. The distributions in the top panel (Figure 2A) were generated by drawing 

values for innocent suspects/fillers from the lure distribution and guilty suspects from the target 

distribution with varying degrees of dependence. In the uncorrelated case, a value (y) drawn from 

the lure distribution, y ~ N(µLure, σ), was independent of the value (x) drawn from the target 

distribution, x ~ N(µTarget, σ). At the opposite extreme (correlation ≈ 1), the values of x and y for a 

given draw from their respective distributions were constrained such that y - µLure = x - µTarget. 

The resulting distributions in the top panel illustrate the fact that, for this model, innocent-vs.-

guilty suspect discriminability (d'IG) is unaffected by the size of the correlation. Again, keep in 

mind that these distributions represent the memory signals for innocent and guilty suspects 

across all lineups, whether or not they were the maximum values in the lineup on those trials. 
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Although the separation of these two distributions is the discriminability measure of interest, a 

suspect ID would have an opportunity to occur only on the subset of trials in which the suspect 

generated the MAX signal in the lineup. 

Figure 2B shows the (sometimes skewed) distribution of memory signals on trials in 

which the innocent and guilty suspects in the above simulation were associated with the MAX 

signal in the lineup. In other words, these distributions show the subset of trials in which a 

suspect ID would occur if the strength of the MAX memory exceeded the decision criterion. 

Note that, as depicted here, these are not normalized distributions but are instead frequency 

distributions. They are plotted as frequency distributions to illustrate the increase in the absolute 

number of target-present trials in which the guilty suspect yields the MAX signal as the 

correlation increases (i.e., as d'TP increases). This is evident in the fact that the height of the 

target-present MAX distribution – but not the target-absent MAX distribution – increases from 

left to right even though the number of simulated target-present and target-absent trials remains 

constant. The rightmost target distribution in Figure 2B is Gaussian with a mean of µTarget and a 

standard deviation σTarget because, on every target-present trial, the target generates the strongest 

memory signal.  

When we later fit the Independent Observations model to empirical data, we will estimate 

d'IG and the locations of the various confidence criteria in relation to the distributions aggregated 

across all lineups (not on the subset of lineups in which the suspect generates the MAX signal). 

That is, we quantify discriminability in terms of the distributions illustrated in Figure 1 (and in 

Figure 2A), not in terms of the extreme value distributions themselves. However, the likelihood 

functions we derive for the Independent Observations model make predictions about the 

probability of suspect IDs, filler IDs and no IDs based on the corresponding extreme value 
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distributions, like the ones shown in Figure 2B. We derive the models and fit their parameters in 

relation to the distributions of memory signals aggregated across all lineups because the math is 

more tractable and the model fits are easier to interpret than would be the case if we based our 

analyses on the corresponding extreme-value distributions themselves. 

Integration Model 

The Integration model (Duncan, 2006; Macmillan & Creelman, 2005) assumes that the 

witness computes a sum of the memory signals generated by all of the faces in the lineup. If that 

summed value exceeds a decision criterion, then an ID will be made, otherwise the lineup is 

rejected. If the summed value exceeds a criterion, the specific face that is identified is the MAX 

face in the lineup. The Integration model has often been used in the eyewitness ID literature to 

conceptualize lineup memory or to compute d' for a lineup task (e.g., Duncan, 2006; Horry, 

Brewer, Weber & Palmer, 2015; Palmer & Brewer, 2012; Palmer, Brewer & Horry, 2013; 

Palmer, Brewer & Weber, 2010; Smith et al., 2017; in press). In fact, it seems fair to say that, at 

the present time, this is the dominant signal detection model in the field of eyewitness 

identification. 

The Integration model is illustrated in Figure 3, which shows the distribution of summed 

memory-strength signals across all target-present and target-absent trials. The mean of the 

summed random variable on target-present trials (guilty suspect + fillers) is the sum of the means 

of the components, or µTarget + ∑ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘−1
1  = µTarget + (k-1)µLure, where the sum reflects the fact 

that there are k – 1 fillers in the target-present lineup. On target-absent trials, the mean (innocent 

suspect + fillers) is simply µLure + (k-1)µLure = kµLure. Because we set µLure = 0 by convention, the 

means of the summed memory-strength variables on target-present and target-absent trials are 

equal to µTarget and 0, respectively. Thus, the difference between them (i.e., the numerator of the 
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d'IG equation) is µTarget - 0 = µTarget, which is the same as the numerator of the d'IG equation for 

the Independent Observations model. What differs is the denominator of the d'IG equation 

because when random variables are summed, the variance of the constituent elements sum as 

well. For example, in a 2-person target-present lineup consisting of one target and one lure, the 

variance of the summed memory signal would be σ2
Target + σ2

Lure + 2ρσTarget σLure. As shown in 

Appendix A, the variance for a summed variable in a lineup of size k (target-present or target-

absent) is given by kσ2 + k(k-1)ρσ2, which reduces to k[1 + (k-1)ρ] after setting σ2 = 1 and 

rearranging terms. Thus, the ability to discriminate innocent from guilty suspects according to 

the Integration model is given by: 

𝑑𝑑′𝐼𝐼𝐼𝐼 =
𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

�𝑘𝑘[1 + (𝑘𝑘 − 1)𝜌𝜌]  
                                                                  (2) 

This equation indicates that positively correlated memory signals should have the effect of 

reducing discriminability between innocent and guilty suspects compared to the uncorrelated 

case. The negative effect results from the fact that summing positively correlated random 

variables increases the variance of the summed variable beyond what it would otherwise be. 

Note that we have assumed that the computation of the summed variable is an error-free process. 

Predicted discriminability would be lower than is implied by Equation 2 if we added random 

error to the summation process, but the predictions of the model with respect to ρ would not 

otherwise be affected. That is, according to the Integration model, d'IG decreases as ρ increases. 

Figure 4A illustrates the distribution of the summed memory signals as envisioned by the 

Integration model as the correlation among memory signals increases from 0 to ~1 (once again 

based on a simulation in which, for the untransformed memory signals, µTarget = 2, µLure = 0, and 

σ = 1).  For the untransformed signals, which are the signals used by the Independent 

Observations model, d' = 2 regardless of ρ (as illustrated earlier in Figure 2A). By contrast, for 
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the transformed (summed) signals in Figure 4A, d'IG is given by Equation 2, which means that, 

according to this model, the ability to discriminate innocent from guilty suspects decreases as the 

correlation increases. As a concrete example, for k = 6 and ρ = 0, 𝑑𝑑′𝐼𝐼-𝐺𝐺 =

2 �6[1 + (6 − 1)0] = 0.82⁄ , but for ρ = .50, 𝑑𝑑′𝐼𝐼-𝐺𝐺 = 2 �6[1 + (6 − 1). 50] = 0.44⁄ . Thus, as 

is evident in Figure 4A, the overlap of summed memory signals associated with target-present 

from target-absent lineups increases (and d'IG decreases) the more the memory signals are 

correlated.  

The distributions in Figure 4B are frequency distributions of the summed decision 

variable on the subset of trials in which innocent or guilty suspects generated the MAX signal. 

Once again, these distributions show the increase in the absolute number of target-present trials 

in which the guilty suspect generates the MAX memory signal as the correlation increases (due 

to the increase in d'TP for target-present lineups with increasing ρ). When we later fit the 

Integration model to empirical data, the parameters we estimate correspond to the parameters 

shown for the Integration model illustrated in Figure 3. Again, however, the likelihood functions 

make predictions about suspect IDs, filler IDs and no IDs from target-present and target-absent 

lineups based on the MAX distributions like the ones shown in Figure 4B. 

Ensemble Model 

The Ensemble model assumes that the subject computes the difference between the 

memory signal for each face and the average memory signal of all faces in the lineup. In essence, 

this decision variable corresponds to how much the memory signal for a given face stands out 

from the crowd of faces in the lineup. If the largest difference score exceeds a decision criterion, 

then the face associated with that difference score is identified (i.e., once again, a MAX rule is 
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assumed).3 This model is closely related to the BEST minus REST model implemented by Clark 

(2003; Clark et al., 2011) in the context of their WITNESS model. 

The Ensemble model is grounded in an extensive body of recent research suggesting that 

when similar objects are presented together, summary statistics are quickly and automatically 

computed (Albrecht & Scholl, 2010; Ariely, 2001; Chong & Treisman, 2003). Such "ensemble 

coding" applies not only to a set of similar objects but also to a set of similar faces. For example, 

when shown pictures of four similar faces, subjects later recognize the mean identity (i.e., the 

morphed average of the presented faces) with a high probability (de Fockert & Wolfenstein, 

2009; Neumann, Schweinberger, & Burton, 2013).  

The Ensemble model is illustrated in Figure 5. Let x be a random variable for an 

individual face drawn from the target or lure distribution and y be a random variable drawn from 

the ensemble (average) distribution of a k-alternative lineup. The decision variable for the 

Ensemble model is x – y. On target-present trials, the mean of x for the target is equal to µTarget, 

and the mean of y (the ensemble variable) is equal to (µTarget + ∑ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘−1
1 ) / k, where the sum 

corresponds to the k – 1 fillers in the lineup. Thus, the mean of the x – y variable for the target is 

equal to µTarget - (µTarget + ∑ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘−1
1 ) / k. Because µLure = 0, the mean of this difference score 

reduces to µTarget - µTarget / k = µTarget (1 – 1/k).  

The mean of the x – y variable on target-absent trials is obtained by setting x for an 

individual filler equal to µLure = 0 (as we did for target-present fillers above) and by setting y 

equal to the mean of the 6 faces in the target-absent lineup. Because all k – 1 fillers and the 

                                                 
3 Based on physical appearance alone, all of the faces in a fair lineup are plausible suspects for having committed the 
crime. However, if none of the faces were remotely plausible, the difference between the best face and the average 
face might still be large on a physical scale, but their psychological similarity to the perpetrator (i.e., the raw 
memory-match signal) would now be similarly small (Nosofsky, 1992).   
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innocent suspect in the lineup are drawn from a distribution with mean equal to µLure = 0, the 

mean of the memory signals in the lineup equals 0. This result indicates that the mean of the x – 

y variable for fillers on target-absent trials remains centered on 0.  

The mean of the x – y variable for fillers on target-present trials is not needed to compute 

innocent vs. guilty suspect discriminability across trials, but we compute it here anyway because, 

somewhat surprisingly, the mean of the difference score for fillers on target-present trials turns 

out to differ from the mean of the difference score for fillers on target-absent trials. The mean of 

x for a filler on target-present trials is equal to µLure and the mean of y remains equal to (µTarget + 

∑ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘−1
1 ) / k. Thus, the mean of the x – y variable for a filler in a target-present lineup is equal 

to µLure - (µTarget + ∑ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘−1
1 ) / k. Because µLure = 0, the mean of this difference score reduces to 

0 – (µTarget + 0) / k = 0 – µTarget / k = – µTarget / k. Thus, according to this model, the mean of the 

filler distribution on target-present trials is actually shifted slightly below zero. This fact explains 

why the target-present filler distribution in Figure 5 differs slightly from the target-absent filler 

distribution.  

We can use the expressions worked out above to specify the numerator of the d'IG 

formula for the ability to discriminate innocent from guilty suspects across lineups according to 

the Ensemble model. More specifically, the numerator is equal to the mean of the x – y decision 

variable for guilty suspects on target-present trials, which was found to be µTarget - µTarget / k 

above, minus the mean of the x – y decision variable for innocent suspects on target-absent trials, 

which we determined is equal to 0. That is, the numerator of the d'IG formula is equal to [µTarget - 

µTarget / k] – 0 = µTarget - µTarget / k = µTarget(1 – 1/k). 
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The next goal is to compute the variance of the x – y decision variable for the Ensemble 

model, which we denote Var(x – y). When x corresponds to the guilty suspect on target-present 

trials,   

Var(x) = σ2
Target  

Var(𝑦𝑦) =  �𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + �𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 + ��𝜌𝜌𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
𝑗𝑗≠𝑖𝑖

𝑘𝑘

𝑖𝑖=1𝑘𝑘−1

� 𝑘𝑘2�  

The expression for Var(y) is the general variance expression for the variance of the mean of k 

random variables, with all pairwise correlations equal to ρ. In Appendix A, we show that, in the 

equal-variance case (and with σ2 = 1), the variance of the target-minus-ensemble decision 

variable is: 

Var(x – y) = 1 - 1/k - [(k-1)/k]ρ 

This variance expression is the same on target-present and target-absent trials in the equal-

variance case, and the square root of that variance expression, �1 − 1 𝑘𝑘 − 𝜌𝜌(𝑘𝑘 − 1 𝑘𝑘⁄ )⁄ , is the 

denominator of the formula used to compute d'. Thus, for the Ensemble model, the ability to 

discriminate innocent from guilty suspects is given by: 

𝑑𝑑′𝐼𝐼𝐼𝐼 =  
𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(1 − 1 𝑘𝑘⁄ )

�1 − 1 𝑘𝑘 − 𝜌𝜌(𝑘𝑘 − 1 𝑘𝑘⁄ )⁄
 

When this result is rearranged into a simpler form (Appendix A), the Ensemble model predicts 

the following in the equal-variance case: 

𝑑𝑑′𝐼𝐼𝐼𝐼 =
𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

�(1 − 𝜌𝜌)𝑘𝑘 (𝑘𝑘 − 1)⁄
                                                                (3) 

According to this equation, as ρ increases, the denominator decreases. That is, the Ensemble 

model predicts that discriminability should increase as the correlation between memory strength 
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signals increases.4 Here again, we have assumed that the statistical computation – in this case, 

the computation of the difference between the memory signal for a given face and the average 

memory signal of all faces in the lineup – is an error-free process. Predicted discriminability 

would be lower than is implied by Equation 3 if we added random error to the computational 

process, but the predictions of the model with respect to ρ would not otherwise be affected. 

For the equal-variance case involving a 6-person lineup (i.e., k = 6) and µTarget = 2 (the 

standard example we have used throughout), if ρ = 0, using Equation 3, the Ensemble model 

predicts that d'IG = 1.83. This value is slightly less than the discriminability predicted by the 

Independent Observations model, which is d'IG = 2 when µTarget = 2, regardless of the size of the 

correlation, but is greater than the discriminability predicted by the Integration model, which (as 

worked out above) is d'IG = 0.82 when µTarget = 2 and ρ = 0. If, instead, ρ = .50, then, according to 

Equation 3, the Ensemble model predicts that d' = 2.58. This value is greater than the values of 

d'IG = 2.0 and d'IG = 0.44 for the Independent Observations model and Integration model, 

respectively, when µTarget = 2 and ρ = .50. Thus, in contrast to those models, the Ensemble model 

predicts that correlated memory signals should enhance the ability to discriminate innocent vs. 

guilty suspects. That prediction is illustrated in Figure 6A (based on a simulation in which, for 

the untransformed memory signals, µTarget = 2, µLure = 0, and σ = 1). Discriminability is obviously 

enhanced when memory signals are correlated whether all trials are considered (upper panel) or 

whether we consider only the subset of trials in which innocent or guilty suspects generated the 

MAX memory signal (Figure 6B).   

 

                                                 
4 Mathematically, the Ensemble decision rule is linearly related to the Best – Rest model (Clark et al., 2011), where 
Rest equals the average of the other 5 lineup members rather than the ensemble average of all 6. These two models 
are linearly related and provide identical fits to the empirical data, so we do not distinguish between them. 
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Summary of model-based predictions about the effect of correlated memory signals 

The key difference between the three models with respect to the role played by correlated 

memory signals is visually illustrated in Figure 7 using the simplest lineup scenario involving 

only two members. On target-present trials, the two members consist of the target (the guilty 

suspect) and a lure (a filler). On target-absent lineup trials, the two members consist of the 

replacement lure (the designated innocent suspect) and a lure (another filler). The figure shows 

the joint distribution of the suspect (x) and filler (y) memory strengths for target-present (black) 

and target-absent (grey) lineups. On target-present trials, x ~ N(µTarget, σTarget) and y ~ N(µLure, 

σLure), and on target-absent trials, x ~ N(µLure, σLure) and y ~ N(µLure, σLure). As illustrated in the 

figure, where the correlation between x and y is set to .80, the different decision rules can be 

thought of as collapsing these joint distributions in different ways. The independent observations 

decision variable for guilty and innocent suspects amounts to the distribution along x for target-

present and target-absent trials (which is unaffected by the presence of a positive correlation). By 

contrast, in the presence of a positive correlation, the Integration (additive) variable increases 

variance and yields lower separation than the independent decision variable. The Ensemble 

(difference) variable instead yields reduced variance and, therefore, a greater separation between 

guilty and innocent suspects than the "independent" target signal alone.  

Likelihood Functions 

Thus far, we have illustrated the predictions that each of the three models makes about 

the effect of correlated memory signals on the underlying memory-strength distributions. Doing 

so was relatively straightforward, but specifying their corresponding likelihood functions is more 

challenging. The likelihood functions are needed to fit the models to empirical data. They go 

beyond the equations presented thus far in that they specify the probability of a suspect ID, a 
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filler ID or no ID on a given target-present or target-absent trial. We first describe a general 

conceptualization of correlated memory signals in terms of shared vs. unshared variance that 

greatly facilitates our subsequent derivation of the model-specific likelihood functions. 

Shared Variance (Correlated Memory Signals) 

Partitioning Target and Lure Distribution Variance. Consider the 5 X 5 matrix of target 

and lure distributions shown in Figure 8. The distributions depict the raw (untransformed) 

memory signals that are used by the Independent Observations model, and the bottom row 

depicts 5 identical signal detection scenarios that directly correspond to the model illustrated in 

Figure 1. That is, for the scenarios in the bottom row of Figure 8, the memory strength values for 

lures (innocent suspects and fillers) and for targets (guilty suspects) are distributed according to 

Gaussian distributions with means of µLure and µTarget, respectively, and, under the equal variance 

assumption (i.e., σTarget = σLure), the same standard deviation, denoted here as σ. Thus, the ability 

to discriminate innocent from guilty suspects is given by d'IG = (µTarget - µLure) / σ.  

Figure 8 illustrates the fact that the variance of the memory signals for innocent and 

guilty suspects in all 5 models in the bottom row (with variances for both distributions fixed at 

σ2) can arise from different sources. More specifically, σ2 can be partitioned into the variance of 

the mean memory signal between lineups (which we denote σ2
b) and the variance of the 

individual item memory signals within a lineup (which we denote σ2
w) such that σ2 = σ2

b + σ2
w. 

The situation is exactly analogous to a one-way repeated-measures ANOVA, with σ2
b 

corresponding to between-subject variance and σ2
w corresponding to within-subject variance. In 

formal terms, shared variance is distributed as b ~ N(0, σb), and the targets (x) and lures (y) are 

distributed as x ~ b + N(µTarget, σw), and y ~ b + N(µLure, σw). Thus, the means of the target and 
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lure distributions would be µTarget and µLure, respectively, and their corresponding (equal) 

variances would be σ2
Target = σ2

b + σ2
w, and σ2

Lure = σ2
b + σ2

w.  

Rows 1 through 4 in Figure 8 show hypothetical distributions from which memory 

signals are drawn for four separate lineups (lineup 1 through lineup 4, as labeled on the right side 

of the figure). In column 1, for all four individual lineups, the memory signal for the guilty 

suspect in a target-present lineup is drawn from the same target distribution (with mean µTarget 

and standard deviation σTarget = σ). Similarly, the memory signals for the innocent suspect in a 

target-absent lineup and for the fillers in both target-present and target-absent lineups are drawn 

from the same lure distribution (with mean µLure and standard deviation σLure = σ). This column 

illustrates the simplest case, where the correlation of memory signals for items within a lineup is 

zero. The correlation is zero because the memory signal for the suspect in a particular lineup 

does not predict the memory signals of the fillers in that lineup. A special feature of the 0-

correlation scenario is that there is no variance in the mean memory signal between lineups (i.e., 

σ2
b = 0), so all of the variance in the aggregate target and lure distributions shown in the bottom 

row of column 1 (σ2) comes from the variance of the item memory signals within a lineup (σ2
w). 

That is, because σ2 = σ2
b + σ2

w, under the 0-correlation scenario where σ2
b = 0, σ2 = 0 + σ2

w = σ2
w. 

Thus, d'IG = (µTarget - µLure) / σw. The state of affairs illustrated in column 1 corresponds to how 

signal detection theory has been used to conceptualize lineup performance in the past in terms of 

the Independent Observations model.  

In reality, we assume that the means of the target and lure distributions are likely to differ 

across lineups (i.e., σ2
b is likely to be greater than 0). As noted earlier, their means are likely to 

differ because the police create lineups not by randomly selecting faces but by instead selecting 

faces that correspond to the description of the perpetrator, thereby ensuring that the faces share 
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features. Columns 2 through 5 illustrate varying degrees of across-lineup variance of mean 

memory signals, which is visually evident in the fact that the means of the distributions from 

which the target and lure memory signals are drawn now vary from lineup to lineup. In other 

words, now, σ2
b > 0, and its value increases from column 2 to column 5. It is also visually 

apparent that, as the variance of mean memory signals across lineups (σ2
b) increases, the variance 

of the memory signals of items within a lineup (σ2
w) must decrease to maintain the same signal 

detection scenario across trials (shown in the bottom row) in which target and lure variance are 

both fixed at σ2. In other words, because σ2 = σ2
b + σ2

w, and because the value of σ2 in the bottom 

row is fixed, as σ2
b increases, σ2

w decreases.  

This non-zero variation of mean memory signals across lineups implies that some of the 

variance in the aggregate memory signals shown in the bottom row of Figure 8 is shared by the 

faces in a given lineup. This shared variance means that the strength of the memory signal 

associated with the suspect in any given lineup is correlated with (i.e., is predictive of) the 

strength of the memory signals associated with the fillers in that lineup. The magnitude of the 

correlation, ρ, is equal to the ratio of the shared variance (σ2
b) to the total variance (σ2

b + σ2
w). 

That is, ρ = σ2
b / (σ2

b + σ2
w). This is the same formula that has been used to calculate the 

intraclass correlation coefficient when assessing interrater reliability for a random sample of n 

judges rating a set of k target items (e.g., Case 2 in Shrout & Fleiss, 1979).  

As noted above, column 1 of Figure 8 shows one extreme in which all of the aggregate 

variance in the bottom row arises from within-lineup variance. In that case, σ2
b = 0, so σ2 = σ2

w 

and ρ = 0 / (0 + σ2
w) = 0. In contrast, column 5 shows the opposite extreme in which all of the 

variance in the aggregate distributions arises from across-lineup variance. In that case, σ2
w = 0, so 

σ2 = σ2
b, and ρ = σ2

b / (σ2
b + 0) = 1. Yet in all cases, the ability to discriminate innocent from 
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guilty suspects, as depicted in the bottom row of each column, is given by d'IG = (µTarget - µLure) / 

√(σ2
b + σ2

w), with σ2
b + σ2

w equal to the fixed value σ2.  

Within-lineup discriminability. The ability to discriminate innocent from guilty suspects 

(d'IG) is an inherently across-lineup measure because a given lineup contains either an innocent 

suspect or a guilty suspect (not both). Nevertheless, it is also of interest to consider within-lineup 

d' for target-present lineups because its value changes as a function of ρ even when d'IG is held 

constant (as it is in the bottom row of Figure 8). The ability to discriminate the guilty suspect 

from the fillers in a target-present lineup is given by d'TP = (µTarget - µLure) / σw. This d' formula 

applies to all of the signal detection models depicted in Figure 8 except for the net (aggregate) 

distributions presented in the bottom row, where it is always the case that 𝑑𝑑′𝐼𝐼𝐼𝐼 =

�𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� �𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑤𝑤2� . In the 0-correlation scenario where σ2
b = 0 (column 1), d'TP is 

equal to d'IG. However, as σ2
b increases from column 1 to column 5, σ2

w decreases. As the 

correlation approaches 1 (such that σw approaches 0), d'TP approaches infinity, in which case the 

guilty suspect could be correctly picked out of the lineup every time. This is true even though the 

ability to discriminate innocent from guilty suspects (d'IG) would be unaffected.  

As noted earlier, this beneficial effect of correlated memory signals for target-present 

lineups (namely, d'TP → ∞ as ρ → 1) is the same beneficial effect of correlated memory signals 

that is observed in the 2AFC task. In contrast to target-present lineups, the ability to discriminate 

the innocent suspect from fillers for fair target-absent lineups (d'TA) is, by definition, always 

equal to 0 because, for fair lineups, the innocent suspect is just another filler from the witness’s 

point of view. For that reason, the size of the correlation does not affect the ability to 

discriminate the innocent suspect from fillers within fair target-absent lineups. Thus, the chances 
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that an ID would land on the innocent suspect is 1/6 for a fair 6-member lineup despite the 

reduction in within-lineup variance as the correlation increases.  

Differentiation. For the models we have considered thus far, an issue that could 

complicate the interpretation of correlated memory signals depicted in Figure 8 is that signal 

detection models for list-memory designs are often assumed to rely on a likelihood ratio decision 

rule (Glanzer & Adams, 1985; McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997). In the 

likelihood ratio version of these models, the decision would instead be based on the likelihood 

that the test item was drawn from the target distribution divided by the likelihood that it was 

drawn from the lure distribution (e.g., Semmler, Dunn, Mickes & Wixted, 2018). The potential 

complication is that likelihood ratio models inherently predict a phenomenon known as 

differentiation.  

When targets and lures share few features (unlike in the lineup situation), differentiation 

results in the target and lure distributions moving in opposite directions (not in the same 

direction, as they do in rows 1 through 4 of Figure 8). When the targets and lures share many 

features, as they presumably do in a well-constructed lineup, likelihood ratio models instead 

predict that as the target distribution shifts to the right, the lure distribution also shifts to the right 

but to a lesser degree, thereby increasing the separation of the two distributions (see, for 

example, Figure 2 of Criss & McClelland, 2006). Thus, differentiation would still be observed in 

that sense. We mention this because the target and lure distributions shown in Figure 8 differ 

from that pattern in that they shift in lockstep.  

One way of conceptualizing the differentiation scenario would be to assume that targets 

(x) and lures (y) are distributed as x ~ b + N(µTarget, σw) and y ~ λb + N(µLure, σw), where 0 < λ < 

1. Thus, shared variance would cause the lure distribution to shift to a lesser degree than the 
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target distribution, as would be true in the differentiation scenario. Consider the extreme case in 

which all of the variance in the net distributions arises from shared variance (i.e., σw = 0, right 

column of Figure 8). In that case, the standard deviations of the net target and lure distributions 

would be equal to σb and λσb, respectively. In other words, an unequal-variance model would be 

expected, with the variance of the target distribution exceeding the variance of the lure 

distribution (σTarget > σLure), which is the pattern typically observed in list-memory studies (Egan, 

1958; Wixted, 2007). However, in our later fits of the models to empirical lineup data, and in our 

prior model-fitting studies (e.g., Wixted, Mickes, Dunn, Clark & Wells, 2016), we have never 

observed that pattern. Instead, we either find that σTarget = σLure or, for understandable reasons 

considered in more detail later, σTarget < σLure. Thus, we use the memory-strength distributions 

shown in Figure 8 in our model-specific likelihood function derivations and assume that any 

differentiation that might exist is small enough that it can be ignored.  

Although we assume that a likelihood ratio decision rule is not applied to the raw 

memory-strength signals illustrated in Figure 8, our analysis is still fully compatible with a 

likelihood ratio decision rule applied to the additive diagnostic variable of the Integration model 

or to the subtractive diagnostic variable of the Ensemble model. Only the Independent 

Observations model, for which the raw memory-strength signal is the diagnostic variable, would 

be excluded from a likelihood ratio interpretation. In any case, we use the lockstep interpretation 

of correlated raw memory signals presented in Figure 8 to facilitate the derivation of the model-

specific likelihood functions described next. 

Model-Specific Likelihood Functions 

The derivation of the relevant likelihood functions begins by specifying the joint 

probabilities of the “events” that result in a given outcome for a particular face (i.e., an outcome 
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consisting of an ID with a particular level of confidence or no ID). The events are as follows: (1) 

the probability of observing a given memory strength, xi, for the face in question, (2) the 

probability that xi is the MAX value in the lineup, and (3) the probability that the decision 

variable, f(x), exceeds the decision criterion for making an ID with a particular level of 

confidence, where x is the set of all items in a given lineup. That is, x = {x1, x2, x3, ... xk}, where 

k is lineup size. When all three conditions are satisfied, the face is identified with the level of 

confidence corresponding to the highest confidence criterion exceeded by f(x). If the three 

conditions are not satisfied by any face in the lineup, then no ID is made (i.e., the lineup is 

rejected). Events 1 and 2 are the same for all three models, but the models differ with respect to 

event 3. That is, they differ with respect to the decision variable, f(x). 

As an example, consider the probability of identifying the guilty target with memory 

strength x1 from a target-present lineup. There is (1) some probability of observing a particular 

memory strength of the target, x1, (2) some probability that x1 will be the highest (MAX) 

memory strength of the lineup members, and (3) some probability, f(x), that the decision variable 

will exceed the decision criterion. The joint probability of those events is the probability that the 

target will be identified from a target-present lineup. For the Independent Observations model, 

the decision variable, f(x), is x1 itself. For the Integration model, f(x) = ∑ 𝑥𝑥𝑗𝑗𝑘𝑘
𝑗𝑗=1 , where xj 

represents the memory strength of the jth face in the lineup. For the Ensemble model, f(x) = 𝑥𝑥1 −

1/𝑘𝑘 ∑ 𝑥𝑥𝑗𝑗𝑘𝑘
𝑗𝑗=1 . 

Assuming a standard signal detection model, the probability of observing target memory 

strength x1 (event 1) is given by a Gaussian distribution with mean, µ1 = µTarget and variance σ1
2 = 

σ2
Target:  
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(6) 

𝑃𝑃(𝑥𝑥1)  =
1

�2𝜋𝜋𝜎𝜎12
𝑒𝑒−(𝑥𝑥1−𝜇𝜇1)2 (2𝜎𝜎12)⁄                                                         (4) 

The probability that x1 is greater than the memory strength of a particular filler j is obtained by 

integrating a Gaussian distribution with mean µj = µLure and variance σj
2 = σ2

Lure from -∞ to x1:   

1
√2𝜋𝜋𝜎𝜎2

� 𝑒𝑒−(𝑥𝑥1−𝜇𝜇𝑗𝑗)2 (2𝜎𝜎𝑗𝑗
2)� 𝑑𝑑𝑑𝑑𝑗𝑗 =

𝑥𝑥1

−∞
 Φ�

𝑥𝑥1 − 𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

� 

where Φ is the standard cumulative normal distribution. Thus, the probability that a given x1 is 

greater than the value of all fillers in a lineup of size k (event 2) is:  

𝑃𝑃(𝑥𝑥2 … 𝑘𝑘 < 𝑥𝑥1|𝑥𝑥1) = �Φ�
𝑥𝑥1 − 𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

�
𝑘𝑘

𝑗𝑗=2

                                                                     (5) 

And the probability that the decision variable, f(x), exceeds the decision criterion, c, given x1 

(event 3) is simply: 

P(f(x) > c ∣ x1 ) 

where, again, x1 is the memory strength of the target in this example. Thus, the probability of 

observing x1 and the probability that x1 is greater than the value of all lures in a lineup of size k 

and the probability that the decision variable, f(x), exceeds the decision criterion, integrated over 

all possible values of x1 (i.e., over all possible target memory-strength values) is given by 

Equation 4 × Equation 5 × Equation 6 integrated from -∞ to +∞: 

1
√2𝜋𝜋𝜎𝜎2

� 𝑃𝑃(𝑥𝑥1)
+∞

−∞
𝑃𝑃(𝑥𝑥2 … 𝑥𝑥𝑘𝑘 < 𝑥𝑥1|𝑥𝑥1)𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 |𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑘𝑘 < 𝑥𝑥1)𝑑𝑑𝑥𝑥1                      

Or, in more detail, 

1
√2𝜋𝜋𝜎𝜎2

� 𝑒𝑒−(𝑥𝑥1−𝜇𝜇1)2 �2𝜎𝜎12��
+∞

−∞
 �Φ�

𝑥𝑥1 − 𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

�
𝑘𝑘

𝑗𝑗=2

 𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 |𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑘𝑘 < 𝑥𝑥1)𝑑𝑑𝑥𝑥1                
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Again, this is the likelihood of observing a target (i.e., guilty suspect) ID from a target-present 

lineup. Similar equations express the probability of observing a filler ID or a no ID from target-

present and target-absent lineups. The 3 models yield different estimates for each probability 

because f(x) differs for each model. The full details for each of these likelihood functions 

(separately for the Independent Observations, Integration and Ensemble models, for both target-

present and target-absent lineups) are presented in Appendix B. 

 For both the Integration and Ensemble models, the derivation provided in Appendix B 

involves a Gaussian approximation of a variable that is not truly Gaussian. An approximation is 

required because, for example, for a given value of x1 associated with a target when it is the 

MAX value in the lineup, the distribution of memory strengths for the fillers are drawn from a 

truncated Gaussian distribution that ranges from -∞ to x1. Thus, the expected value of the mean 

of those 5 fillers given x1 (and given that x1 is the MAX value) involves computing the sum or 

mean of 5 non-Gaussian variables. Our derivation relies on the assumption that this aggregated 

value is distributed as a Gaussian variable. According to the central limit theorem, that would be 

a safe assumption when many variables are averaged, but with only 5 variables summed or 

averaged, the distribution would not necessarily be approximately Gaussian. Nevertheless, even 

under these conditions, we found that the Gaussian approximation is extremely accurate and does 

not detectably affect the ability to distinguish between the competing models (see section entitled 

“Truncated normal approximation” in Appendix B). 

Model Parameters and Model-Recovery Simulations 

 We next describe the specific parameters to be estimated for each model and then report 

model-recovery simulations in which simulated data were generated for each of the three models. 

For each simulated dataset, all three models were fit to the data to determine (1) which model fit 
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best (it should be the model that generated the simulated data) and (2) whether the estimated 

parameters corresponded to the programmed parameters. 

Model Parameters 

In the models we later fit to empirical data, we set µLure = 0 and σLure = 1 and estimate the 

following free parameters: (1) µTarget, (2) σTarget, (3) σ2
b, and (4) the confidence criteria (e.g., c1 

through cn when an n-point confidence scale is used). For the equal-variance signal detection 

model, σ2
Target = σ2

Lure = σ2. As noted earlier (e.g., Figure 8), in that case, σ2 = σ2
b + σ2

w. Because 

we set σ2 equal to 1 for convenience, it follows that σ2
w = 1 - σ2

b. Thus, estimating σ2
b from a fit 

to correlated data automatically estimates σ2
w as well, so only one parameter (σ2

b) is needed to 

estimate the correlation, where, again, ρ = σ2
b / (σ2

b + σ2
w) = σ2

b / (σ2
b + 1 - σ2

b) = σ2
b. In other 

words, σ2
b is the correlation parameter. As described in Appendix B, the Independent 

Observations model and the Integration model both require this parameter to capture correlated 

memory signals, but the Ensemble model does not because it subtracts out shared variance 

regardless of the size of the correlation. Analogously, the computational formula used to 

compute d' for 2AFC recognition does not require a correlation parameter even though, for that 

task (as we described earlier), d' = (√2) µTarget / (1 - ρ). Whether the memory signals are 

correlated or uncorrelated, the computational formula for the 2AFC task is (1/√2)[z(H) – z(F)], 

where H and F represent the hit and false alarm rates (see Equation 7.2 of Macmillan & 

Creelman, 2005, p. 372). This formula does not require ρ as a parameter because it assumes a 

subtractive decision rule, which means that shared variance is subtracted out. For the same 

reason, the Ensemble model does not require σ2
b as a free parameter even when the memory 

signals in a lineup are correlated. Thus, typically, the Ensemble model requires one fewer free 

parameter than the other two models. 
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All of the models include σTarget as a free parameter to allow for the possibility of unequal 

target and lure variances. In list-memory studies, the target and lure distributions have usually 

been found to have unequal variances, with the targets having greater variance than the lures 

(Egan, 1958; Wixted, 2007). One explanation for that finding is that variable amounts of 

memory strength are added to the target items during encoding (e.g., due to random variability in 

a subject’s attention across the study list). If that were true, then both the mean and the variance 

of the targets would increase relative to the lures. The same phenomenon might be expected to 

increase the variance of the target distribution relative to the lure distribution when memory is 

tested using a lineup. Then again, as shared variance (σ2
b) increases, any effect of encoding 

variability on the target distribution would increasingly apply to the lure distribution as well 

(counteracting the differential effect of encoding variability on targets). Thus, an unequal-

variance model might be less likely to be observed in a lineup study compared to a list-memory 

study. Indeed, in none of the fits described later is σTarget > σLure. As noted earlier, this empirical 

result is one reason why we do not assume that the distributions in Figure 8 exhibit 

differentiation (and instead assume that they shift more-or-less in lockstep). 

Another variable that can affect the relative variances of the target and lure distributions 

in a lineup study is the size of the pool of the stimuli from which the faces in the lineup are 

drawn. In some of the experiments we will consider later, the lures are randomly drawn from a 

large pool of faces (different lures for different subjects), whereas the same target face is used for 

every subject (namely, the one face that matches the perpetrator seen in the video). A design like 

that would be expected to selectively add variability to the memory strengths of the lures. For 

example, by chance, some of the lures might look very much unlike the perpetrator, but some 

others might be virtual lookalikes.  



MODELS OF LINEUP MEMORY        35 

The key point is that σ2
w can be partitioned into multiple sources of variance that can 

differentially affect the variance of the target distribution relative to the lure distribution. To 

allow for differential effects of these sources of variance, we can define σw-target = ασw, where σ2
w 

now specifically refers to the within-lineup variance of the lures. Thus, in the general (non-equal-

variance) case, targets (x) and lures (y) are distributed as x ~ b + N(µTarget, ασw), and y ~ b + 

N(µLure, σw). Recall that for the equal-variance case, the variances of the aggregate target and lure 

distributions are both equal to σ2
b + σ2

w. For the unequal-variance we are considering now, σ2
Lure 

= σ2
b + σ2

w but σ2
Target = σ2

b + σ2
w-target = σ2

b + ασ2
w. Thus, estimating σTarget provides an indirect 

estimate of α. 

Model-Recovery Simulations 

 To confirm the validity of the likelihood functions derived in Appendix B, we conducted 

extensive model-recovery simulations. These simulations were conducted to ensure that the full 

set of simulated data generated by a particular model (guilty suspect IDs, filler IDs, and no IDs 

from target-present lineups, plus filler IDs and no IDs from target-absent lineups) would be 

accurately fit by that model while at the same time uniquely recovering the programmed 

parameter values. In each of many model-recovery simulations, three sets of simulated data were 

first created using a given set of parameter values, one using the Independent Observations 

model, one using the Integration model, and one using the Ensemble model. Each simulated data 

set was then fit with the Independent Observations, Integration, and Ensemble models using the 

likelihood functions derived in Appendix B (maximizing the likelihood of the data). Thus, there 

were 9 fits per round of model-recovery simulations.  

 When generating simulated data for a given model, there were always 6 members in a 

lineup, and a 6-point confidence scale was always used. We set µLure = 0 and σLure = 1, and we set 
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c1 through c6 to fixed values that differed from the three models (these values were chosen so 

that the predicted ROC data would fall in a reasonable range). Although we conducted many sets 

of model-recovery simulations, for the model-recovery results presented here, we set µTarget = 1.5 

and σTarget = 1. The simulated data were generated with shared variance distributed as b ~ N(0, 

σb) and with lures (x) and targets (y) distributed as x ~ b + N(µLure, σw), and y ~ b + N(µTarget, σw). 

For one set of simulations involving uncorrelated data, we set σ2
b = 0, whereas for a second set of 

simulations involving correlated data, we set σ2
b = .50. 

Figure 9 shows the χ2 goodness-of-fit results for the uncorrelated and correlated model 

recovery simulations we performed, with details presented in Table 2. For a given simulation, 

there were 10,000 target-present trials and 10,000 target-absent trials. Obviously, the chi-square 

goodness-of-fit statistics indicate that, in each case, the model that generated the data also fit the 

data extremely well and fit better than the two alternative models. In two cases, the fit of the 

wrong model appears to at least rival the fit of the true model. Those two cases involve the 

correlated lineup data generated by either the Independent Observation model or the Integration 

model (Figure 9B). Although both models can fit the data generated by the other model fairly 

well, the apparent rivalry is an illusion because, in both cases, the correct model (but not the 

incorrect model) could fit the data with one fewer free parameter by fixing σTarget = 1. We 

allowed that parameter to vary to ensure that the correct model would recover its true value, 

which it always did (Table 2).  

Indeed, of more importance than the goodness-of-fit data is the fact that, for both the 

uncorrelated and correlated simulated data, all of the programmed parameter values (not just 

σTarget) were recovered with almost perfect accuracy for the 6 cases in which a model was fit to 

its own simulated data. This can be seen by comparing the parameter estimates in Table 2 shown 
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in bold relative to the “true” programmed values shown in italics. The true parameters were 

accurately recovered in all of our model-recovery simulations, not just those shown in Table 2. 

The results of these simulations demonstrate that the likelihood functions derived in Appendix B 

are accurate even though, for the Integration and Ensemble models, they involve a very close 

Gaussian approximation of a non-Gaussian random variable. Note that the Ensemble model has a 

particularly hard time fitting data generated by the other two models (Figure 9). These results 

may indicate that the Ensemble model is the least flexible of the three models under 

consideration. 

One final source of variance might sometimes need to be estimated as well, namely, 

criterion variance (Benjamin, Diaz & Wee, 2009). Confidence criteria surely vary across 

participants. For the Independent Observations and Integration models, the same parameter that 

captures shared variance (σ2
b) also captures criterion variability. In other words, although we 

have conceptualized σ2
b as the variance in the means across lineups (shared variance), for these 

models, it can instead be conceptualized as the variance of confidence criteria shifting in 

lockstep across lineups (or as a combination of the two sources of variance). For the Ensemble 

model, by contrast, an additional parameter (σc) would be needed to capture lockstep criterion 

variance. For the fits we performed to empirical data (described in the next section), adding a 

criterion-variance parameter to the Ensemble model never improved its fit. However, it is 

conceivable that this parameter would need to be added to the Ensemble model for it to 

adequately fit other data sets collected in future studies.  

Our approach to capturing criterion variance does not take into account the possibility of 

independent criterion noise over and above a lockstep shift across trials, and it is not entirely 

clear to us how to write the likelihood functions in such a way as to capture that additional 
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source of variance. We therefore investigated the effect of independent criterion noise by 

repeating the above simulations except that independent criterion noise was added to the 

simulated data. This was accomplished by selecting each confidence criterion from a 

distribution, such that ci ~ N(µi, σv), where µi represents the mean placement for confidence 

criterion i and σv = 0.50. The only restriction was that the confidence criteria remain 

monotonically arranged. Table 3 shows that the model-fitting pattern remains largely unchanged 

despite the presence of independent criterion noise. The programmed parameter values are 

recovered somewhat less accurately, and the overall fits are not quite as good for the Ensemble 

model (which also needed its lockstep criterion-variance parameter, σc, to provide an adequate 

fit), but these results suggest that moderate independent criterion variability should not 

dramatically affect the interpretation of which model best accounts for the empirical data. Here 

again, note that the fit of the correct model (but not the incorrect model) would remain largely 

unchanged if we fixed σTarget = 1 instead of allowing to vary as a free parameter. Thus, the 

advantage of the correct models over the incorrect models in Table 3 is larger than the χ2 values 

imply when taken at face value. 

Finally, one potentially problematic issue came to light in our model recovery 

simulations. To increase ecological validity, eyewitness identification researchers often use 

several different targets (i.e., several different perpetrators) in a study instead of having all 

subjects watch the same mock-crime video. In these multiple-target studies, each target is 

presented to a different subset of the subjects in the study, and each target has their own 

description-matched lineups. Basically, each target is used in its own mini lineup study, and then 

the data are pooled together for the final large-N analysis. The potential problem for model-

fitting purposes is that different targets can, and usually do, give rise to different d'IG values 
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(because, for example, some targets are more memorable than others, exposure time is greater 

for some targets than others, etc.). Our model-recovery simulations showed that when the data 

are pooled across multiple targets who are associated with different d'IG values (creating a 

mixture model), the model that generated the data is not necessarily the model that provides the 

best fit. Therefore, for purposes of identifying theoretical mechanisms, we focus on large-N 

studies that used single-perpetrator designs.  

Model Fits to Empirical Data 

Having derived and validated their likelihood functions, the next step is to fit the three 

competing models to empirical data. The goal of model-fitting is not so much to identify the 

winning model as it is to rule out models that are not viable. As noted by Pashler and Roberts 

(2000), the mere fact that a model provides a good fit cannot be assumed to validate that model. 

However, a model that provides a differentially poor fit relative to other models can be 

reasonably rejected. Although our main focus here is obviously on model fitting, we also later 

review the relevant non-model-fitting evidence bearing on the predictions of the three competing 

models.  

We fit each of the three models to several empirical data sets. The data were taken from 

eyewitness identification experiments in which (1) a large number of subjects (~1000) were 

tested in a given condition, (2) all of the subjects viewed the same target, (3) the subjects were 

tested only once, and (4) the lineups were fair. Several studies fit our criteria. Recently, for 

example, Mickes et al. (2017) reported data from simultaneous lineups presented to a large 

number of subjects, and they collected ROC data in two different ways. One ROC was created 

using confidence ratings (the typical approach) and the other was created using an instructional 

biasing manipulation. Thus, this data set is unique in that the model-fitting results can be tested 
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for generality across different methods for generating the ROC data. Subjects in this experiment 

were randomly assigned either to a confidence rating condition (N = 978) or to one of four 

instructional biasing conditions: liberal (N = 1066), neutral (N = 1037), unbiased (N = 984), or 

conservative (N = 1076). In each condition, approximately half the subjects were randomly 

assigned to a target-present lineup and half to a target-absent lineup. One ROC was constructed 

using data from the confidence rating condition, and the other was constructed using data from 

the four instructional biasing conditions (i.e., the instruction-based ROC had 4 points, one for 

each biasing condition).  

Figure 10 shows the empirical ROC data from this experiment. The ROC data from the 

confidence condition are shown as filled gray circles. The solid black curve represents an 

atheoretical fit provided by pROC software (with estimated standard errors of the fit shown in 

light gray). This software package is often used to compute (atheoretical) partial area under the 

ROC curve. The four open symbols represent the correct and false ID rates from the four 

different biasing conditions (upright triangle = liberal instructions, inverted triangle = neutral 

instructions, circle = unbiased instructions, and square = conservative instructions). The dashed 

diagonal line represents chance performance. The top horizontal axis (TA Filler ID Rate) is 

included as a reminder that the false ID rate shown on the bottom axis is the TA filler ID rate 

divided by lineup size because the lineups were fair and there was no designated innocent 

suspect in this study. Thus, the estimated false ID rate for the innocent suspect is equal to the TA 

filler ID rate divided by the lineup size of k. Note that the two extreme biasing conditions yield 

points that appear to fall on a slightly lower ROC curve compared to the two more neutral 

biasing conditions and compared to the confidence ROC curve.  
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We first fit the Independent Observations, Ensemble, and Integration models to the 

confidence-based ROC data using the relevant likelihood functions described earlier. We 

optimized the fits by maximizing the likelihood of the data. Note that these models were fit to the 

full data set (including filler IDs from target-present lineups), not just to the subset of ROC data 

shown in Figure 10 (which does not represent target-present filler IDs because the ROC 

represents suspect IDs). Table 4 shows the results of the model fits. The Ensemble model fit the 

data better (i.e., it yielded a lower chi-square) than the two competing models, with the 

Integration model performing the worst. Figure 11 shows the observed and predicted data. All of 

the models capture the trends in the standard ROC data (Figure 11A), but an advantage for the 

Ensemble model is apparent for the target-present ROC data, which plots the target-present 

suspect ID rate vs. the target-present filler ID rate (Figure 11B). For these data, the Ensemble 

model provided a closer approximation than the competing models, perhaps because the 

Ensemble model uniquely predicts that the mean memory strength of target-present fillers differs 

from that of target-absent fillers (see Figure 5).  

The performance of the Ensemble model in this case is even better than it might seem to 

be at first glance. Given that the data likely involved correlated memory strength signals, it is 

perhaps not surprising that the Independent Observations model needed the σ2
b parameter to 

adequtely fit the data. But even with that extra parameter, it still yielded a higher chi-square than 

the Ensemble model. Thus, according to AIC and BIC, which penalize models for having extra 

free parameters, the Ensemble model is also (necessarily in this case) judged to have provided 

the best fit. The Integration model provided a particularly poor fit in that the observed data 

deviated significantly from its optimal predictions. Adding the σ2
b parameter (to capture 

correlated memory-strength values) did not significantly improve its fit. Thus, these data weigh 
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against the Integration model and in favor of the Ensemble model, but they do not necessarily 

reject the Independent Observations model (the predictions of which did not deviate significantly 

from the observed data). 

The goodness-of-fit story is similar for the instruction-based ROC data as shown in Table 

5. These data were actually fit twice by all three models, once assuming a single value of µTarget 

and once again allowing µTarget to differ for the two extreme biasing conditions compared to the 

two more neutral conditions. For all three models, the fit was significantly improved by allowing 

µTarget to differ in this way (µTarget1 corresponds to the two extreme biasing conditions, and 

µTarget2 corresponds to the two neutral biasing conditions), but the relative standing of the three 

models was unchanged. As shown in Table 5, the Ensemble model once again clearly provided 

the best fit according to all of the goodness-of-fit measures (χ2, AIC and BIC). The Independent 

Observations model, even with an extra free parameter (σ2
b), did not yield a chi-square value as 

low as the Ensemble model did. Moreover, the deviations between predicted and observed data 

for the Independent Observations were significant in this case, though not by much. And once 

again, the Integration model provided the poorest fit (deviating significantly from the data), one 

that was not significantly improved by adding the σ2
b parameter to capture correlated memory-

strength values. Figure 12 shows the observed and predicted data. Once again, all of the models 

capture the trends in the standard ROC data (Figure 12A), but a slight visual advantage is 

apparent for the Ensemble model for the target-present ROC data (Figure 12B).  

For both the confidence-based ROC data and the instruction-based ROC data, an 

unequal-variance model is suggested by the Ensemble model, with the standard deviation of the 

target distribution estimated to be less than that of the lure distribution in both cases (i.e., σTarget < 

1). This is in contrast to what is commonly observed in studies of list memory, where σTarget is 
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usually greater than 1.0, with a typical value being 1.25 (e.g., Egan, 1958; Ratcliff, Shue, & 

Gronlund 1992; Wixted, 2007). As noted earlier, one possibility is that this result reflects the fact 

that although every subject saw the same target (namely, a photo of the person seen in the mock 

crime video), the fillers were randomly drawn from a large pool of description-matched photos. 

Thus, the lure distribution, but not the target distribution, included item variance. It seems 

reasonable to suppose that selectively adding item variance to the fillers would result in a lure 

distribution with greater variance than the target distribution (as suggested by the best-fitting 

Ensemble model).   

Next, we compared the ability of the three models to fit the data from a second large-N 

study. Seale-Carlisle & Mickes (2016) compared the simultaneous lineup to another kind of 

sequential lineup used in the UK (we refer to this as the US vs. UK study). In US procedure (N = 

1148), 6 faces were shown simultaneously. In the UK procedure (N = 1057), 9 faces were 

presented sequentially, and each face was presented as a moving video instead of as a still photo. 

Unlike the standard sequential procedure used in the US, in the UK procedure, witnesses lap 

through the 9 faces twice before making a decision. Thus, in principle, they could make a 

memory-based comparison between the best face vs. the ensemble of the full set of faces in the 

lineup, in which case the Ensemble model might be the most appropriate model for both lineup 

procedures.  

The stimuli used in the US vs. UK study were completely different from the stimuli used 

for the confidence-based vs. instruction-based ROC study described above. The witnessed event 

consisted of a 20-s mock-crime video of a young White male stealing several items from a 

vacated office. An experienced London Metropolitan Police Officer with specialized training in 

eyewitness identification procedures filmed the actor according to legally mandated 
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specifications from the Police and Criminal Evidence (PACE) act of 1984 (Code D). The Officer 

also selected nine fillers based on PACE code guidelines from the database used by the London 

Metropolitan Police Force for constructing lineups. Thus, in this study, the fillers were not 

selected randomly from a large pool of stimuli for each subject. Instead, the stimuli were fixed 

for subjects assigned to target-present lineups (containing the guilty suspect) and for subjects 

assigned to target-absent lineups (containing a replacement filler). Using a fixed set of stimuli 

across subjects is potentially methodologically problematic in terms of ecological validity. 

However, on the positive side, the fact that the stimuli were selected by an experienced police 

officer presumably works in the opposite direction, enhancing ecological validity. In any event, 

the results of the model fits turned out to be similar to the fits described above and are presented 

in Table 6. 

For both the US and UK procedures, the Ensemble model, despite having the fewest free 

parameters, again provided the best fit according to all goodness-of-fit measures. An equal-

variance model was implied by the Independent Observations and Ensemble models (i.e., 

allowing for unequal variance did not significantly improve the fit for either model).5 According 

to AIC and BIC, of the three models, the Integration model provided the worst fit to the US data 

and the second worse fit to the UK data. In addition, its best-fitting parameter estimates for the 

UK data were slightly odd, with µTarget estimated to be 0.  

Note that, according to all three models, the simultaneous (US) procedure far 

outperformed the sequential (UK) procedure in terms of discriminability. For example, according 

to the best-fitting Ensemble model, d'IG for the US procedure was 1.27, whereas d'IG for the UK 

procedure was 0.60 (for these equal-variance fits, d'IG = µTarget). The two lineup procedures differ 

                                                 
5 This equal-variance finding may reflect the fact that, in this study, item variance for fillers was minimized because 
the fillers were not randomly drawn from a large group of photos. 



MODELS OF LINEUP MEMORY        45 

in many ways, and it is not clear which differences account for the discriminability advantage 

enjoyed by the simultaneous US lineups. One possibility is that an ensemble representation based 

on memory for sequentially presented faces is noisier than an ensemble representation based on 

faces that are simultaneously available. Whatever the reason for the difference in 

discriminability, the key point for our purposes here is that the Ensemble model fit the data from 

both procedures the best even though the competing models had an additional free parameter.  

 Finally, we fit data from another large-N single-target study reported by Brewer and 

Wells (2006). In this study, subjects first watched a video in which they viewed two targets, a 

thief and a waiter. All 1200 subjects were then tested for their ability to identify the thief from an 

8-member simultaneous lineup (with the stimuli fixed across subjects for both target-present and 

target-absent lineups). Thus, this was a single-target test, and it was the first test for every subject 

(after completing the lineup memory test for the thief, the subjects were subsequently tested for 

their ability to identify the waiter from a different 8-member simultaneous lineup). Other aspects 

of the experimental design make it less than ideal for model-testing purposes because the 

reported data were collapsed across multiple between-subjects experimental conditions (namely 

high-vs.-low-similarity foils, and biased vs. unbiased instructions). Still, we fit these data for the 

sake of generality as it is the only other large-N study that we know of in which memory for a 

single target was tested using a lineup. We fit the three models to the data from the first test 

(involving the thief), and the results are shown in Table 7. 

In no case was the fit significantly improved by allowing unequal variance or by the 

addition of the σ2
b parameter. All three models are capable of fitting the data without significant 

deviations, though the Integration model required an extra parameter (σTarget was allowed to 

differ from 1) to do so. When AIC or BIC is used to judge the relative goodness of fit, the 
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Ensemble model once again provides the best fit. According to BIC, the Integration model 

provides the worst fit, whereas according to AIC, the Independent Observations model provides 

the worst fit.  

 We also fit these three models to a variety of small-N single-target eyewitness 

identification studies. The results were (perhaps not surprisingly) inconclusive. For example, all 

three models provided an adequate fit (i.e., non-significant chi-square values) to data reported in 

Experiment 1 of Mickes, Flowe and Wixted (2012). Similarly, when fit to the fair lineup data 

from Wetmore et al. (2015), the Ensemble and Independent Observations models adequately fit 

the data, whereas the Integration model did not. And when fit to the data reported by Carlson et 

al. (2016), none of the models provided an adequate fit to the data.  

General Discussion 

 We tested three signal detection models that have recently been used to interpret 

simultaneous lineup performance: the Independent Observations model, the Integration model 

and the Ensemble model. The Independent Observations model is often used to illustrate how 

signal detection theory applies to lineups; the Integration model is the most frequently used 

signal detection model in the eyewitness identification literature to compute d'; and the Ensemble 

model is a quantitative instantiation of a theory of lineup memory recently proposed by Wixted 

and Mickes (2014). Wixted and Mickes (2014) argued that the simultaneous presentation of 

similar faces in a lineup facilitates the discounting of non-diagnostic facial features, thereby 

permitting diagnostic features (those that disproportionately point to the guilty suspect) to play a 

larger role in the decision. The discounting of non-diagnostic features is an inherent property of 

the Ensemble model. That is, when memory signals are correlated, subtracting away the 

ensemble (average) from the MAX face in the lineup removes the contribution of shared (non-
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diagnostic) features from the diagnostic memory strength variable. The removal of non-

diagnostic shared variance reduces error variance and enhances discriminability.6 

To empirically differentiate between these three models, we first derived their likelihood 

functions and then fit them to empirical ROC data from multiple eyewitness identification 

experiments. On balance, the model-fitting evidence would appear to weigh heavily against the 

Integration model because it generally provided the worst fit. With regard to the other two 

models, namely, the Independent Observations model and the Ensemble model, both fit the ROC 

data reasonably well, though a non-trivial edge was apparent for the Ensemble model. The ability 

of a model to adequately fit the empirical data is important to demonstrate, but, on its own, it 

does not necessarily validate the best-fitting model (Roberts & Pashler, 2002). Thus, it is also 

important to consider non-model-fitting evidence bearing on the three models considered here.  

Non-Model-Fitting Evidence 

As described earlier, the three models make different predictions about the effect of 

correlated memory signals on discriminability. All three models enjoy the benefit of correlated 

memory signals on d'TP (the ability to discriminate the guilty suspect from fillers on target-

present trials), but they differ in what they predict about d'IG (the ability to discriminate innocent 

from guilty suspects across trials). The Integration model predicts that correlated memory signals 

will reduce d'IG; the Ensemble model predicts that correlated memory signals will increase d'IG; 

and the Independent Observations model predicts no effect of correlated memory signals on d'IG. 

Because the area under the empirical ROC is jointly determined by both d'TP and d'IG, the 

Independent Observations and (especially) the Ensemble models predict that the area under the 

                                                 
6 See Table 1 on page 270 of Wixted & Mickes (2014) for a concrete illustration of this idea in the context of their 
diagnostic feature-detection theory. 
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ROC will be higher when decisions are based on correlated memory signals. Several lines of 

investigation bear on this prediction. 

Simultaneous Lineups vs. Sequential Lineups and Showups. A considerable body of 

recent evidence suggests that the area under the ROC does in fact increase when eyewitness 

identification procedures allow the eyewitness to take advantage of correlated memory signals. 

For example, multiple studies have documented a simultaneous lineup advantage over 

eyewitness identification procedures that present faces in isolation, such as sequential lineups, 

where the faces in the lineup are presented individually (Carlson & Carlson, 2014; Dobolyi & 

Dodson, 2013; Gronlund et al., 2012; Mickes et al., 2012), and showups, where only a single 

face – the suspect – is shown (Gronlund et al., 2012; Mickes, 2015; Wetmore et al., 2015). 

Because the faces in a simultaneous lineup are likely to be associated with correlated memory 

signals (in contrast to faces presented in isolation), these results suggest that discriminative 

performance benefits from correlated memory signals.  

Fair vs. Unfair Lineups. The same point applies to the use of fair vs. unfair lineups. In an 

unfair lineup, the memory signals are less correlated than they otherwise would be because, by 

definition, the fillers in an unfair lineup do not share features of the perpetrator (only the suspect 

does). A positive correlation across lineups usually occurs precisely because the features of 

everyone in the lineup match the features of the perpetrator. Thus, changing that state of affairs, 

which unfair lineups do, would reduce the correlation. Empirically, unfair lineups have been 

found to impair the ability to discriminate innocent from guilty suspects (Colloff et al., 2016; 

Colloff et al., in press), again suggesting that correlated memory signals enhance 

discriminability. 
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The fact that performance benefits from correlated memory signals is consistent with 

both the Independent Observations model and the Ensemble model but weighs against the 

Integration model, which does not unambiguously predict an advantage of correlated signals and 

is the only model that is capable of predicting a disadvantage under those conditions. A priori, it 

seems like an odd strategy for eyewitnesses to use (i.e., its prior odds seem low). Quantitatively, 

it generally does not adequately fit the data; and, qualitatively, its predictions are generally 

incorrect. Thus, one over-arching conclusion of our investigation is that, going forward, the 

currently dominant Integration model of lineup memory should probably be abandoned. 

Confidence as a Difference Score. Although both the Independent Observations and 

Ensemble models predict a benefit of correlated memory signals on discriminative performance, 

they make contrasting predictions about another issue, namely, the degree to which confidence in 

an ID is affected by the other members of the lineup. In the Independent Observations model, 

confidence is determined by the memory signal associated with a given face without regard for 

the other faces in the lineup. In the Ensemble model, confidence is instead determined by the 

difference in the memory signal generated by a face and the ensemble average memory signal of 

the faces in the lineup. As we noted earlier, studies from a variety of domains have investigated 

the effect of adding implausible (i.e., dud) alternatives to a set of items on confidence in 

decisions about the plausible (i.e., non-dud) alternatives in the set. These studies were uniformly 

interpreted to mean that confidence in plausible alternatives is determined by a difference score 

(Charman et al. 2011; Hanczakowski et al., 2014; Horry & Brewer, 2016; Windschitl & 

Chambers, 2004). Findings like these also weigh in favor of the Ensemble model, independent of 

the model-fitting results reported here.  
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On the other hand, as we also noted earlier, these results could be explained by assuming 

that when duds are added to the set, a more liberal decision criterion is used to express high 

confidence (Hanczakowski et al., 2014). If so, a model that assumes a difference variable (the 

Ensemble model) would not necessarily fit ROC data better than competing models. The fact 

that the Ensemble model fared better than the other models in fitting ROC data lends credence to 

the standard interpretation of the dud effect. That is, the operative memory-strength variable is 

the degree to which an item in a set of items stands out from the crowd.   

Future Directions 

The signal detection models considered here do not provide a theoretical account of 

reaction times. A natural candidate for providing such an account is the Two-stage Dynamic 

Signal Detection (2DSD) theory proposed by Pleskac and Busemeyer (2010). That model relies 

on a drift diffusion process to account for choice and decision time at step 1 of the decision-

making process and a standard signal detection model to account for confidence at step 2 of the 

decision-making process. With regard to lineups, decision-making at step 1 would involve 

detecting the MAX face in the lineup (which is a detection decision that is not usually but could 

be made explicit). To estimate confidence at step 2, the model assumes that evidence continues 

to accumulate after the decision at step 1. Confidence at step 2 is theoretically based on this 

additionally accumulated evidence, which is conceptualized in terms of a standard signal 

detection model (and which, as here, could be implemented with Independent Observations, 

Ensemble, or Integration decision variable).  

The 2DSD model has not yet been applied to lineup memory, but there is no reason why 

it could not be. In fact, the main message of our article is that there is no reason why the 

sophisticated modeling efforts that have been applied to list-memory paradigms should not also 



MODELS OF LINEUP MEMORY        51 

be brought to bear on the kind of applied paradigms used in the field of eyewitness identification. 

In our view, and in the view of others (e.g., Clark, 2003; Clark et al., 2011), basic and applied 

memory researchers have become far too estranged from each other. The eyewitness 

identification issues considered here seem too important for that seemingly unnecessary division 

to remain in place.  



MODELS OF LINEUP MEMORY        52 

References 

Albrecht, A. R., & Scholl, B. J. (2010). Perceptually averaging in a continuous visual world: 

Extracting statistical summary representations over time. Psychological Science, 21, 560–

567. 

Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 

12, 157–162. 

Benjamin, A. S., Diaz, M. L., & Wee, S. (2009). Signal detection with criterion noise: 

Applications to recognition memory. Psychological Review, 116, 84-114. 

Brewer, N., & Wells, G. L. (2006). The confidence-accuracy relation in eyewitness 

identification: Effects of lineup instructions, foil similarity, and target-absent base rates. 

Journal of Experimental Psychology: Applied, 12, 11-30. 

Cameron, E. L., Tai, J. C., Eckstein, M. P., & Carrasco, M. (2004). Signal detection theory 

applied to three visual search tasks - Identification, yes/no detection and localization. 

Spatial Vision, 17, 295–325. 

Carlson, C. A. & Carlson, M. A. (2014). An evaluation of perpetrator distinctiveness, weapon 

presence, and lineup presentation using ROC analysis. Journal of Applied Research in 

Memory and Cognition, 3, 45–53. 

Carlson, C. A., Dias, J. L., Weatherford, D. R. & Carlson, M. A. (2016). An investigation of the 

weapon focus effect and the confidence-accuracy relationship for eyewitness 

identification. Journal of Applied Research in Memory and Cognition. 

http://dx.doi.org/10.1016/j.jarmac.2016.04.001 



MODELS OF LINEUP MEMORY        53 

Charman, S. D., Wells, G. L. & Joy, S. W. (2011). The dud effect: Adding highly dissimilar 

fillers increases confidence in lineup identifications. Law and Human Behavior, 25, 479-

500. 

Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 

43, 393–404. 

Clark, S. E. (2003). A memory and decision model for eyewitness identification. Applied 

Cognitive Psychology, 17, 629-654. 

Clark, S. E. (2012). Costs and benefits of eyewitness identification reform: Psychological science 

and public policy. Perspectives on Psychological Science, 7, 238-259. 

Clark, S. E., Erickson, M. A., & Breneman, J. (2011). Probative value of absolute and relative 

judgments in eyewitness identification. Law and Human Behavior, 35, 364-380. 

Clark, S. E., Moreland, M. B. & Gronlund, S. D. (2014). Evolution of the empirical and 

theoretical foundations of eyewitness identification reform. Psychonomic Bulletin & 

Review, 21, 251-67.  

Colloff, M. F., Wade, K. A., & Strange, D. (2016). Unfair lineups make witnesses more likely to 

confuse innocent and guilty suspects. Psychological Science, 27, 1227-1239. 

Colloff, M. F., Wade, K. A., Strange, D. & Wixted, J. T. (in press). Filler Siphoning Theory 

Does Not Predict the Effect of Lineup Fairness on the Ability to Discriminate Innocent 

from Guilty Suspects: Reply to Smith, Wells, Smalarz, and Lampinen (2017). 

Psychological Science. 

Criss, A. H. & McClelland, J. L. (2006). Differentiating the differentiation models: A 

comparison of the retrieving effectively from memory model (REM) and the subjective 

likelihood model (SLiM). Journal of Memory and Language, 55, 447–460. 



MODELS OF LINEUP MEMORY        54 

de Fockert, J., & Wolfenstein, C. (2009). Rapid extraction of mean identity from sets of faces. 

Quarterly Journal of Experimental Psychology, 62, 1716–1722. 

Dobolyi, D. G. & Dodson, C. S. (2013). Eyewitness confidence in simultaneous and sequential 

lineups: a criterion shift account for sequential mistaken identification overconfidence. 

Journal of Experimental Psychology: Applied, 19, 345–357. 

Duncan, M. (2006). A signal detection model of compound decision tasks. (Tech Note DRDC TR 

2006-256. Toronto, Defence Research and Development Canada. 

Egan, J. P. (1958). Recognition memory and the operating characteristic. (Tech Note AFCRC-

TN-58-51). Bloomington, IN: Indiana University, Hearing and Communication Laboratory. 

Glanzer, M. & Adams, J. K. (1985). The mirror effect in recognition memory. Memory & 

Cognition, 13, 8-20. 

Gronlund, S. D., Carlson, C. A., Neuschatz, J. S., Goodsell, C. A., Wetmore, S., Wooten, A. & 

Graham, M. (2012). Showups Versus Lineups: An Evaluation Using ROC Analysis. 

Journal of Applied Research in Memory and Cognition, 1, 221-228.  

Hall, J. F. (1979).Recognition as a function of word frequency. American Journal of Psychology, 

92, 497-505. 

Hanczakowski, M., Zawadzka, K. & Higham, P. (2014). The dud-alternative effect in memory 

for associations: putting confidence into local context. Psychonomic Bulletin & Review 

21, 543-548. 

Hintzman, D. L. (1988). Judgments of frequency and recognition memory in multiple-trace 

memory model. Psychological Review, 95, 528–551. 

Hintzman, D. L. (2001). Similarity, global matching, and judgments of frequency. Memory & 

Cognition, 29, 547–556. 



MODELS OF LINEUP MEMORY        55 

Horry, R., Brewer, N., Weber, N. & Palmer, M. (2015). The effects of allowing a second 

sequential lineup lap on choosing and probative value. Psychology, Public Policy, and 

Law 21, 121-133. 

Horry, R. & Brewer, N. (2016). How target–lure similarity shapes confidence judgments in 

multiple-alternative decision tasks. Journal of Experimental Psychology: General, 145, 

1615-1634. 

Lampinen, J. M. (2016). ROC analyses in eyewitness identification research. Journal of Applied 

Research in Memory and Cognition, 5, 21-33. 

Lindsay, R. C. L. & Wells, G. L. (1985). Improving eyewitness identifications from lineups: 

Simultaneous versus sequential lineup presentation. Journal of Applied Psychology, 70, 

556-564. 

Macmillan, N. A. (2002). Signal detection theory. In H. Pashler & J. Wixted (Eds.), Stevens' 

handbook of experimental psychology: Methodology in experimental psychology (3rd ed., 

pp. 43-90). Hoboken, NJ, US: John Wiley & Sons Inc. 

Macmillan N. A. & Creelman, C. D. (1991). Detection theory: A user’s guide. Mahwah, NJ: 

Erlbaum. 

Macmillan N. A. & Creelman, C. D. (2005). Detection theory: A user’s guide (2nd ed.). Mahwah, 

NJ: Erlbaum. 

McClelland, J. L., & Chappell, M. (1998). Familiarity breeds differentiation: a subjective-

likelihood approach to the effects of experience in recognition memory. Psychological 

Review, 105, 734–760. 

Mickes, L. (2015). Receiver operating characteristic analysis and confidence-accuracy 

characteristic analysis in investigations of system variables and estimator variables that 



MODELS OF LINEUP MEMORY        56 

affect eyewitness memory. Journal of Applied Research in Memory & Cognition , 4, 93–

102. 

Mickes, L., Flowe, H. D. & Wixted, J. T. (2012). Receiver operating characteristic analysis of 

eyewitness memory: Comparing the diagnostic accuracy of simultaneous and sequential 

lineups. Journal of Experimental Psychology: Applied, 18, 361-376. 

Mickes, L., Seale-Carlisle, T. M., Wetmore, S. A., Gronlund, S. D., Clark, S. E., Carlson, C. A., 

Goodsell, C. A., Weatherford, D. & Wixted, J. T. (2017). ROCs in Eyewitness 

Identification: Instructions vs. Confidence Ratings. Applied Cognitive Psychology, 31, 

467-477. 

Neumann, M. F., Schweinberger, S. R., & Burton, A. M. (2013). Viewers extract mean and 

individual identity from sets of famous faces. Cognition, 128, 56–63. 

Neuschatz, J. S., Wetmore, S., Key, K. N., Cash, D., Gronlund, S. D. & Goodsell, C. A. (2016). 

A comprehensive evaluation of showups (pp. 43-69). In Bornstein, B. & Miller, K. (eds.) 

Advances in Psychology and Law. Springer. 

Nosofsky, R. M. (1992). Similarity scaling and cognitive process models. Annual Review of 

Psychology, 43, 25-53. 

Palmer, E. M., Fencsik, D. E., Flusberg, S. J., Horowitz, T. S., & Wolfe, J. M. (2011). Signal 

detection evidence for limited capacity in visual search. Attention, Perception, & 

Psychophysics, 73, 2413–2424. 

Palmer, J., Verghese, P. & Pavel, M. (2000). The psychophysics of visual search. Vision 

Research, 40, 1227–1268 

http://wixtedlab.ucsd.edu/publications/wixted2012/Mickes_Flowe_Wixted_in_press.pdf


MODELS OF LINEUP MEMORY        57 

Palmer, M. A., & Brewer, N. (2012). Sequential lineup presentation promotes less biased 

criterion setting but does not improve discriminability. Law and Human Behavior, 36, 

247–255. 

Palmer, M. A., Brewer, N., & Weber, N. (2010). Postidentification feedback affects subsequent 

eyewitness identification performance. Journal of Experimental Psychology: Applied, 16, 

387-398. 

Palmer, M., Brewer, N., Weber, N. & Nagesh, A. (2013). The confidence-accuracy relationship 

for eyewitness identification decisions:  Effects of exposure duration, retention interval, 

and divided attention. Journal of Experimental Psychology: Applied, 19, pp.55-71. 

Palmer, M., Brewer, N. & Horry, R. (2013). Understanding gender bias in face recognition: 

Effects of divided attention at encoding. Acta Psychologica 142, 362-369. 

Pleskac T. J. & Busemeyer J. R. (2010). Two-stage dynamic signal detection: a theory of choice, 

decision time, and confidence. Psychological Review, 117, 864–901. 

Police Executive Research Forum (2013). A National Survey of Eyewitness Identification 

Procedures in Law Enforcement Agencies. http://policeforum.org/library/eyewitness-

identification/NIJEyewitnessReport.pdf 

Ratcliff, R., Sheu, C. F., & Gronlund, S. D. (1992). Testing global memory models using ROC 

curves. Psychological Review, 99, 518-535. 

Seale-Carlisle, T. M. & Mickes, L. (2016). US lineups outperform UK lineups. Royal Society 

Open Science. DOI: 10.1098/rsos.160300 

Semmler, C., Dunn, J., Mickes, L. & Wixted, J. T. (2018).  The Role of Estimator Variables in 

Eyewitness Identification. Journal of Experimental Psychology: Applied. 

Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM—Retrieving 

http://policeforum.org/library/eyewitness-identification/NIJEyewitnessReport.pdf
http://policeforum.org/library/eyewitness-identification/NIJEyewitnessReport.pdf


MODELS OF LINEUP MEMORY        58 

effectively from memory. Psychonomic Bulletin & Review, 4, 145–166. 

Shrout, P.E. & Fleiss, J.L. (1979). Intraclass Correlations: Uses in Assessing Rater Reliability. 

Psychological Bulletin, 2, 420-428. 

Smith, P. L. & Sewell, D. K. (2013). A competitive interaction theory of attentional selection and 

decision making in brief, multielement displays. Psychological Review, 120, 589-627. 

Smith, A. M., Wells, G. L., Lindsay, R. C. L., & Penrod, S. D. (2017). Fair lineups are better 

than biased lineups and showups, but not because they increase underlying 

discriminability. Law and Human Behavior, 41, 127-145.  

Smith, A. M., Wells, G. L., Smalarz, L., & Lampinen, J. M. (in press). Increasing the Similarity 

of Lineup Fillers to the Suspect Improves the Applied Value of Lineups Without 

Improving Memory Performance: Commentary on Colloff, Wade, & Strange (2016). 

Psychological Science. 

Tulving, E. (1981). Similarity relations in recognition. Journal of Verbal Learning & Verbal 

Behavior, 20, 479-496. 

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352. 

Verghese, P. (2001). Visual search and attention: A signal detection theory approach. Neuron, 

31, 523-535. 

Wetmore, S. A., Neuschatz, J. S., Gronlund, S. D., Wooten, A., Goodsell, C. A. & Carlson, C. A. 

(2015). Effect of retention interval on showup and lineup performance. Journal of 

Applied Research in Memory and Cognition, 4, 8-14. 

Windschitl, P. D., & Chambers, J. R. (2004). The dud-alternative effect in likelihood judgment. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 198–215. 

Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition memory. 



MODELS OF LINEUP MEMORY        59 

Psychological Review, 114, 152-176. 

Wixted, J. T. & Mickes, L. (2014). A signal-detection-based diagnostic-feature-detection model 

of eyewitness identification. Psychological Review, 121, 262-276. 

Wixted, J. T. & Mickes, L. (2018). Theoretical vs. empirical discriminability: The application of 

ROC methods to eyewitness identification. Cognitive Research: Principles and 

Implications. 

Wixted, J. T., Mickes, L., Dunn, J. C., Clark, S. E. & Wells, W. (2016).  Estimating the 

reliability of eyewitness identifications from police lineups. Proceedings of the National 

Academy of Sciences, 113, 304-309. 

Wixted, J. T., Mickes, L., Wetmore, S., Gronlund, S. D. & Neuschatz, J. S. (2017). ROC analysis 

in theory and practice. Journal of Applied Research in Memory and Cognition, 6, 343-

351. 

Zawadzka, K., Higham, P. A. and Hanczakowski, M. (2016). Confidence in forced-choice 

recognition: What underlies the ratings? Journal of Experimental Psychology: Learning, 

Memory, and Cognition. 

  



MODELS OF LINEUP MEMORY        60 

 
Table 1. Summary of the decision variable and decision rule for each of the three models under 
consideration here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Model Decision Variable  Decision Rule 

Independent 
Observations 

The raw 
(untransformed) 

memory strength of a 
face in the lineup 

Identify the MAX face if its 
memory strength exceeds 

the decision criterion 

Integration 
The sum of the memory-
strength values across 
all faces in the lineup 

Identify the MAX face if 
summed memory strength 

exceeds the decision 
criterion 

Ensemble 

The difference between 
the memory strength of 

a face and the mean 
memory strength of the 

faces in the lineup 

Identify the MAX face if its 
difference score exceeds the 

decision criterion 
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Table 2. Results of model-recovery simulations. Panel A corresponds to the fits to the 
uncorrelated data summarized in Figure 9A, and Panel B corresponds to the fits to the correlated 
data summarized in Figure 9B. The parameters µTarget, σTarget, and c1 through c6 were free to vary 
for all fits to determine if their programmed values would be recovered. In addition, σ2

b was 
included as a free parameter for the fits to the uncorrelated data if it significantly improved the 
fit, and, except for the Ensemble model, it was included as a free parameter for the fits to the 
correlated data (to determine if its programmed value would be recovered). Note that in every 
case, the model that generated the simulated data, when fit those data, not only fit better than the 
alternative models but also returned the true programmed parameters (highlighted in bold) with a 
high degree of accuracy. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Note. “--” means that the parameter was not included in the fit. 

Parameter true Ind Obs fit ENS fit INT fit true Ind Obs fit ENS fit INT fit true Ind Obs fit ENS fit INT fit

µ Target 1.5 1.51 1.47 1.84 1.5 0.94 1.50 1.75 1.5 1.32 1.16 1.51

σ Target 1.0 1.01 1.29 1.68 1.0 1.25 0.97 2.29 1.0 0.80 1.02 1.09
c1 1.2 1.20 1.13 -0.31 1.1 0.45 1.11 -0.79 0.0 1.25 1.15 -0.04
c2 1.4 1.40 1.28 0.46 1.2 0.65 1.21 -0.06 2.0 1.77 1.57 2.02
c3 1.6 1.61 1.44 1.26 1.5 1.18 1.51 1.84 3.0 2.04 1.81 3.03
c4 2.0 2.01 1.79 2.72 1.8 1.64 1.79 3.44 4.0 2.32 2.07 4.04
c5 2.4 2.40 2.16 4.05 2 1.94 1.99 4.51 5.0 2.62 2.37 5.08
c6 2.8 2.80 2.57 5.30 2.2 2.22 2.19 5.48 7.0 3.20 3.00 7.03
σ 2

b 0 -- -- -- 0 0.73 -- 0.14 0.0 -- -- --

χ 2 9.5 814.3 181.3 16.2 1.47 40.9 164.1 1499.3 19.2
df 10 10 10 9 10 9 10 10 10
p 0.483 0.000 0.000 0.064 0.999 0.000 0.000 0.000 0.037

Ind Obs Simulated Data Ensemble Simulated Data Integration Simulated Data

Parameter true Ind Obs fit ENS fit INT fit true Ind Obs fit ENS fit INT fit true Ind Obs fit ENS fit INT fit

µ Target 1.5 1.50 1.31 2.61 1.5 1.73 1.49 3.44 1.5 0.85 1.07 1.50

σ Target 1.0 1.01 0.91 1.96 1.0 1.18 0.99 2.75 1.0 0.93 0.82 0.99
c1 1.2 1.20 0.98 1.14 1.1 1.40 1.10 2.01 0.0 0.59 0.88 -0.01
c2 1.4 1.39 1.07 1.88 1.2 1.60 1.20 2.76 2.0 1.00 1.04 1.99
c3 1.6 1.59 1.16 2.62 1.5 2.19 1.49 4.89 3.0 1.20 1.12 2.99
c4 2.0 2.01 1.36 4.20 1.8 2.75 1.80 6.89 4.0 1.40 1.20 3.95
c5 2.4 2.42 1.58 5.70 2 3.11 1.99 8.16 5.0 1.60 1.29 4.91
c6 2.8 2.82 1.80 7.14 2.2 3.48 2.20 9.45 7.0 2.01 1.48 6.92
σ 2

b 0.50 0.51 -- 0.13 0.50 0.56 -- 0.12 0.50 0.78 -- 0.48

χ 2 8.5 40.8 11.8 29.4 5.4 46.8 7.1 320.2 2.7
df 9 10 9 9 10 9 9 10 9
p 0.485 0.000 0.225 0.001 0.867 0.000 0.631 0.000 0.976

Ensemble Simulated Data Integration Simulated DataInd Obs Simulated Data 
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Table 3. Results of model-recovery simulations when independent criterion variance was added 
to lockstep criterion variance. The true values for the criterion parameters now represent the 
obtained average criterion placement over all simulation trials. The parameters µTarget, σTarget, and 
c1 through c6 were free to vary for all fits. In addition, except for the Ensemble model, σ2

b was 
included as a free parameter. For the Ensemble model, its criterion-variance parameter (σc) was 
free to vary as well. 
 
 

 

 

 

 

  

Parameter true Ind Obs fit ENS fit INT fit true BEST fit ENS fit INT fit true BEST fit ENS fit INT fit

µ Target 1.5 1.40 1.34 2.52 1.5 1.41 1.52 2.94 1.5 0.83 1.22 1.48

σ Target 1.0 1.00 0.88 1.81 1.0 1.26 1.03 2.75 1.0 0.92 0.82 0.97
c1 0.39 0.37 0.66 -1.79 0.79 0.51 0.80 -0.59 0.0 0.57 0.88 -0.03
c2 0.98 0.92 0.91 0.31 1.19 1.25 1.20 2.30 2.0 0.97 1.20 1.96
c3 1.50 1.41 1.15 2.21 1.49 1.83 1.53 4.50 3.0 1.18 1.36 2.97
c4 2.03 1.90 1.40 4.06 1.78 2.34 1.84 6.45 4.0 1.39 1.52 3.99
c5 2.61 2.45 1.70 6.15 2.08 2.85 2.14 8.34 5.0 1.59 1.68 5.01
c6 3.28 3.04 2.03 8.37 2.48 3.48 2.52 10.59 7.0 1.99 2.00 6.99
σ 2

b 0.50 0.56 -- 0.16 0.50 0.74 -- 0.21 0.50 0.80 -- 0.50
σ c 0.00 -- 0.21 -- 0.00 -- 0.34 -- 0.00 -- 0.64

χ 2 11.1 263.8 13.1 62.3 24.8 46.4 19.6 197.7 3.6
df 9 9 9 9 9 9 9 9 9
p 0.268 0.000 0.159 0.000 0.003 0.000 0.020 0.000 0.933

Ind Obs Simulated Data Ensemble Simulated Data Integration Simulated Data
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Table 4. Model fits to confidence-based ROC data from Mickes et al. (2017). 

 

 

  

Note. Ln(L) represents the maximized log likelihood. 
The lowest χ2, AIC and BIC values are shown in bold 

Parameter Ind Obs Ensemble Integration
µ Target 2.01 2.24 3.24

σ Target 0.88 0.67 1.63

c1 1.32 1.39 0.85
c2 1.42 1.46 1.19
c3 1.54 1.54 1.57
c4 1.72 1.67 2.17
c5 1.90 1.80 2.75

c6 2.19 2.02 3.67

c7 2.59 2.32 4.96
c8 3.07 2.69 6.51
σ 2

b 0.32 -- --

χ 2 21.1 13.4 27.1
df 13 14 14
p 0.071 0.495 0.019

Ln(L) -1795.0 -1791.4 -1797.2
AIC 3612.0 3602.8 3614.5
BIC 3665.8 3651.6 3663.3
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Table 5. Model fits to instruction-based ROC data from Mickes et al. (2017). 

 

 

 

 

 

  

Parameter Ind Obs Ensemble Integration
µ Target1 1.88 2.06 3.04

µ Target2 2.06 2.22 3.44

σ Target 0.95 0.60 1.83
c1 0.80 1.08 -0.73
c2 1.25 1.36 0.71
c3 1.32 1.40 0.91
c4 1.63 1.60 1.94

σ 2
b 0.34 -- --

χ 2 10.0 6.3 12.5
df 4 5 5

p 0.041 0.278 0.028

Ln(L) -2852.6 -2850.5 -2853.8
AIC 5721.1 5715.0 5723.6
BIC 5771.8 5759.3 5766.0
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Table 6. Model fits to confidence-based ROC data from Seale-Carlisle & Mickes (2016). 

 

   
Parameter US UK US UK US UK

µ Target 0.97 0.40 1.27 0.60 1.04 0.00

σ Target 1.00 1.00 1.00 1.00 1.78 1.52
c1 0.93 0.90 1.30 1.14 -0.56 -1.40
c2 1.71 1.51 1.83 1.59 2.76 0.98
c3 2.47 2.15 2.45 2.12 5.86 3.32
σ 2

b 0.33 0.06 -- -- 0.40 --

χ 2 6.4 10.7 5.3 4.3 7.7 4.0

df 4 4 5 5 3 4
p 0.172 0.030 0.384 0.506 0.052 0.409

Ln(L) -1657.7 -1608.7 -1656.9 -1605.3 -1658.3 -1605.1

AIC 3325.3 3227.3 3321.8 3218.7 3328.5 3220.3
BIC 3350.5 3252.1 3341.9 3238.5 3358.8 3245.1

IntegrationInd Obs Ensemble
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Table 7. Model fits to Thief condition of Brewer and Wells (2006). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Parameter Ind Obs Ensemble Integration

µ Target 1.33 1.51 1.30

σ Target 1.00 1.00 2.19
c1 1.56 1.58 0.99
c2 1.61 1.62 1.20
c3 1.75 1.73 1.74
c4 2.07 2.01 2.97
c5 2.71 2.58 5.26

χ 2 12.9 9.0 8.4
df 9 9 8
p 0.168 0.436 0.397

Ln(L) -1747.6 -1745.2 -1745.0
AIC 3507.3 3502.5 3504.0
BIC 3537.8 3533.0 3539.6
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Figure 1. Equal-variance Gaussian signal detection model for lineups. An ID is made if the 
memory-match signal of the most familiar (MAX) face in the lineup exceeds c1. In that case, the 
confidence rating associated with the ID depends on the highest confidence criterion that is 
exceeded (e.g., the confidence rating is 5 if the strength of the MAX face exceeds c5). Note that 
this model corresponds to a fair lineup. In an unfair lineup, the suspect stands out from the other 
fillers in such a way that the innocent suspect in a target-absent lineup more closely resembles 
the perpetrator than any of the fillers do. In that case, the innocent suspect and filler distributions 
would not have the same mean. 
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Figure 2. Simulated distributions of the decision variable under the Independent Observations 
model (i.e., raw memory signals) for innocent and guilty suspects as a function of the correlation 
of memory signals between suspects and lures (ρ).  (A) Shows these distributions across all 
lineups, (B) shows lineups conditional on the suspect generating the maximum memory signal 
(i.e., the memory signal for the suspect was greater than that of all the lures). The obtained 
(simulated) d'IG in panel A remains constant at its programmed value of 2.0 as ρ increases. The 
distributions in panel B are frequency distributions, which show that IDs of guilty suspects from 
target-present lineups increase as the correlation increases. The numbers above each distribution 
indicate the proportion of target-present and target-absent trials in which the guilty suspect or 
innocent suspect, respectively, generated the MAX signal in the simulation. These numbers 
therefore represent the maximum hit and false alarm rates, and they illustrate the fact that, all 
else being equal, as ρ increases, the ability to discriminate the guilty suspect from the fillers in 
target-present increases (i.e., d'TP increases), selectively increasing the correct ID rate. 
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Figure 3. Integration signal detection model for lineups. An ID is made if the summed memory-
strength of the faces in the lineup exceeds the decision criterion (with confidence determined by 
the highest criterion exceeded). When the summed memory strength signal exceeds the criterion, 
the face that is identified is the face that generates the MAX (non-summed) memory signal in the 
lineup. Note that µTarget and µLure here are the same as µTarget and µLure for the untransformed 
memory signals in Figure 1 (i.e., the summing operation does not change these mean values). 
However, the standard deviations depicted here (σTP and σTA) differ from the standard deviations 
for the untransformed memory signals (σTarget and σLure) in Figure 1 because the variance of a 
summed (uncorrelated or positively correlated) random variable is greater than the variance of 
the individual components.  
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Figure 4. Simulated distributions of the decision variable under the Integration model (i.e., 
summed memory signals) as a function of the correlation of memory signals between suspects 
and lures (ρ).  (A) Shows these distributions across all lineups, (B) shows the lineups conditional 
on the suspect generating the maximum memory signal (i.e., the memory signal for the suspect 
was greater than that of all the lures). The distributions in panel B are frequency distributions, 
and the number labels show the proportion of trials in which the suspect yielded the MAX value. 
Except for random error, the proportions are the same as those shown in panel B of Figure 2, but 
the distribution of the summed diagnostic decision variable on those trials is different. 
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Figure 5. Ensemble signal detection model for lineups of size k. An ID is made if the difference 
between memory signals of a face minus the ensemble average (µ) exceeds the decision criterion 
(with confidence determined by the highest criterion exceeded). When the difference score 
exceeds the criterion, the face that is identified is the face that generates the MAX difference 
score. The standard deviations for the target-absent and target-present lineups here (σI and σG, 
respectively) differ from the corresponding standard deviations for the untransformed memory 
signals in Figure 1 (σLure and σTarget, respectively). Here, smaller standard deviations are shown, 
corresponding to a positive correlation.   
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Figure 6. Simulated distributions of the decision variable under the Ensemble model (i.e., raw 
memory signal minus mean memory signal) for innocent and guilty suspects as a function of the 
correlation of memory signals between suspects and lures (ρ).  (A) Shows these distributions 
across all lineups, (B) shows lineups conditional on the suspect generating the maximum 
memory signal (i.e., the memory signal for the suspect was greater than that of all the lures). The 
distributions in panel B are frequency distributions, and the number labels show the proportion 
of trials in which the suspect yielded the MAX value. Except for random error, the proportions 
are the same as those shown in panel B of Figures 2 and 4, but the distribution of the diagnostic 
decision variable on those trials is different. 
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Figure 7. This figure (center plot) shows the joint distribution of suspect (x) and filler (y) 
memory strengths for 2-alternative target-present (black), and target-absent (grey) trials. The 
different decision rules can be thought of as collapsing these joint distributions in different ways: 
the independent observations decision variable for guilty and innocent suspects just amounts to 
the distribution along x for target-present and target-absent trials. The integration decision 
variable calculates suspect+filler for each trial, and thus marginalizes along one diagonal of the 
suspect,filler distribution. The Ensemble model (technically here, BEST minus REST), uses the 
difference of suspect-lure memory strengths as the decision variable, and thus marginalizes the 
joint distribution along the other diagonal. In the presence of a correlation (here, ρ = 0.8) of 
suspect and filler signals on a given trial, the Ensemble (difference) variable clearly yields a 
greater separation between guilty and innocent suspects than the "independent" signal alone; 
moreover, the "integration" (additive) variable clearly yields lower separation than the 
independent observations decision variable. 
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Figure 8. Distribution of memory-match signals across lineups (solid distributions = guilty 
suspects; dashed distributions = innocent suspects and fillers) as the correlation (ρ) increases 
from 0 to 1. The net distributions shown in the bottom row (Row 5) are all the same and 
correspond to memory strength distributions aggregated across trials (as in Figure 1). Rows 1 
through 4 shows the distributions from which innocent and guilty suspect values are drawn for 4 
separate lineups. The columns correspond to an increasing correlation such that more and more 
of the variance in the aggregate distributions is accounted for by between-lineup variance and 
less and less by within-lineup variance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Memory Match Signal Generated by 
Individual Faces in a Lineup 



MODELS OF LINEUP MEMORY        75 

Figure 9. Results from two representative model-recovery simulations in which simulated data 
were generated by each of the three models (as shown on the x-axis) and then the three models 
were fit to each data set (the fitted model is shown in the legends). In panel A, the correlation in 
the programmed raw memory signals was set to 0 (i.e., σ2

b = 0), as in Column 1 of Figure 8. 
Because σ2 = σ2

b + σ2
w, and because we set σ2 = 1 for these equal-variance simulations, this 

means that σ2
w = 1. In panel B, the correlation in the programmed raw memory signals was set 

to .5 (i.e., σ2
b = .5), as in Column 3 of Figure 8, which means that σ2

w = .5 as well. The models 
that generated the simulated data (consisting of 10,000 target-present and 10,000 target-absent 
trials) fit better than the alternative models in every case. The programmed (and estimated) 
parameters for these fits are presented in Table 2. 
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Figure 10. Confidence-based and instruction-based ROC data from Mickes et al. (2017). 
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Figure 11. A. Observed ROC data from the confidence condition of Mickes et al. (2017) and 
ROC data predicted by the three competing models using their maximum-likelihood parameter 
estimates (TP = target-present and TA = target-absent). B. Observed and predicted target-present 
ROC data, with the target-present filler ID rate now plotted on the x-axis.  
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Figure 12. A. Observed ROC data from the instructional-biasing condition of Mickes et al. 
(2017) and ROC data predicted by the three competing models using their maximum-likelihood 
parameter estimates (TP = target-present and TA = target-absent). B. Observed and predicted 
target-present ROC data, with the target-present filler ID rate now plotted on the x-axis. 
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Appendix A: Integration and Ensemble models for k-alternative lineups 

Integration Model 

To appreciate how this model works, consider first the simplest case of a 2-alternative 

lineup. A target-present trial would consist of a guilty suspect value drawn from a distribution 

with mean and standard deviation of µTarget and σTarget, respectively, and a filler drawn from a 

distribution with mean and standard deviation of µLure and σLure, respectively. Thus, setting µLure 

= 0, the mean of the summed distribution on target-present trials would be µTarget + µLure = µTarget 

+ 0 = µTarget, and the variance of that summed distribution would be σ2
Target + σ2

Lure + 2ρσTarget 

σLure, where ρ represents the correlation between the two memory signals across trials. As 

described earlier, ρ = σ2
b / (σ2

b + σ2
w). Note that the larger the correlation, the greater the variance 

of the summed decision variable. Similarly, a fair target-absent trial would consist of an innocent 

suspect drawn from a distribution with mean and standard deviation of µLure and σLure, 

respectively, and a filler drawn from the same distribution. Thus, the mean of the summed 

distribution on target-absent trials would be µLure + µLure  = 0 + 0 = 0, and the variance of that 

summed distribution would be σ2
lure + σ2

lure + 2ρσLure σLure.  

Because the mean of the summed variable on target-present trials is µTarget and the mean 

of the summed variable on target-absent trials is 0, the numerator of the d' measure for this 

model is µTarget – 0 = µTarget. For the equal-variance version of the model, σ2
Target = σ2

Lure = σ2, in 

which case the common variance of the target-present and target-absent distributions in the 

denominator would be 2σ2 + 2ρσ2. Setting σ2 = 1, the variance of the two distributions becomes 2 

+ 2ρ, or 2(1 + ρ). Thus, discriminability between innocent and guilty suspects would be equal to 

𝑑𝑑′ = 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �2(1 + 𝜌𝜌)⁄ . According to this equation, discriminability for the Integration model 
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is lower than it would be for the Independent Observations model (for which d' = µTarget) even 

when ρ = 0, and it only gets worse as the correlation increases.  

The same basic message applies to larger lineups of size k. The mean of the summed 

random variable on target-present trials is the sum of the means of the components, or µTarget + 

∑ 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘−1
1  = µTarget + (k-1)µLure, where the sum reflects the fact that there are k – 1 fillers in the 

target-present lineup. On target-absent trials, the mean is simply µLure + (k-1)µLure = kµLure. 

Because we set µLure = 0 by convention, the means of the summed memory-strength variables on 

target-present and target-absent trials are equal to µTarget and 0, respectively. For the uncorrelated 

equal-variance case (where σ2
Target = σ2

Lure = σ2), the sum of the k component variances is simply 

kσ2, and this is true for both target-present and target-absent lineups. For correlated random 

variables, the variance of the sum, Var(Sum), is given by 

Var(Sum) =  𝑘𝑘𝜎𝜎2 + ��𝜌𝜌𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
𝑗𝑗≠𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

 In the equal-variance version of the model, this equation reduces to 

𝑉𝑉ar(Sum) =  𝑘𝑘𝜎𝜎2 + 𝑘𝑘(𝑘𝑘 − 1)𝜌𝜌𝜌𝜌2 

or, after setting σ2 = 1 and rearranging: 

𝑉𝑉ar(Sum) =  𝑘𝑘[1 + (𝑘𝑘 − 1)𝜌𝜌] 

Thus, discriminability for a k-alternative lineup according to the INTEGRATION model is: 

𝑑𝑑′ =  𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 �𝑘𝑘[1 + (𝑘𝑘 − 1)𝜌𝜌]⁄  

According to this model, as ρ increases, discriminability should decrease. In the uncorrelated (ρ 

= 0) case, discriminability for the INTEGRATION model becomes: 

𝑑𝑑′ =  𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 √𝑘𝑘⁄  
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Ensemble Model 

Let x be a random variable from the target distribution, y be a random variable from the 

ensemble average distribution on target-present trials of a k-alternative lineup, and z be a random 

variable from the lure distribution. In that case,  

Var(𝑥𝑥) =  𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2  

Var(𝑦𝑦) =  �𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + (𝑘𝑘 − 1)𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 + ��𝜌𝜌𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
𝑗𝑗≠𝑖𝑖

𝑘𝑘

𝑖𝑖=1

� 𝑘𝑘2�  

Var(𝑧𝑧) =  𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2  

For the equal-variance case, σ2
Target = σ2

Lure = σ2, which simplifies the expression for Var(y): 

Var(𝑦𝑦) =  �𝜎𝜎2 +  �𝜎𝜎2 + 𝑘𝑘(𝑘𝑘 − 1)𝜌𝜌𝜎𝜎2� 𝑘𝑘2�  

Var(𝑦𝑦) =  [𝑘𝑘𝑘𝑘2 +  𝑘𝑘(𝑘𝑘 − 1)𝜌𝜌𝜎𝜎2] 𝑘𝑘2⁄  

Var(𝑦𝑦) =  𝜎𝜎2[1 +  𝜌𝜌(𝑘𝑘 − 1)] 𝑘𝑘⁄  

To compute the variance of x – y (which is the decision variable according to the Ensemble 

model), we eventually make use of this definitional formula: 

Var(𝑥𝑥 − 𝑦𝑦) =  𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦) − 2𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) 

To compute Cov(x,y) in the formula above, we also make use of this definitional formula: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) =  𝐸𝐸(𝑥𝑥𝑥𝑥) − 𝐸𝐸(𝑥𝑥)𝐸𝐸(𝑦𝑦). 

The E(x) and E(y) components of this covariance formula are straightforward and are given by: 

𝐸𝐸(𝑥𝑥) =  𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

𝐸𝐸(𝑦𝑦) = �𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + �𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� 𝑘𝑘�  

where ∑ (here and below) means to sum over k – 1 fillers. 

𝐸𝐸(𝑦𝑦) = 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑘𝑘⁄  
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E(xy) is given by:  

𝐸𝐸(𝑥𝑥𝑥𝑥) = 𝐸𝐸 �𝑥𝑥 �𝑥𝑥 + �𝑧𝑧�  / 𝑘𝑘� = 𝐸𝐸 � 𝑥𝑥2 𝑘𝑘⁄ + �𝑥𝑥𝑥𝑥 𝑘𝑘� � = 𝐸𝐸[𝑥𝑥2 𝑘𝑘⁄ ] + 𝐸𝐸 ��𝑥𝑥𝑥𝑥 𝑘𝑘� � 

The two terms on the right of the above expression equal 

𝐸𝐸[𝑥𝑥2 𝑘𝑘⁄ ] =  �𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + 𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 � 𝑘𝑘⁄  

and 

𝐸𝐸 ��𝑥𝑥𝑥𝑥 𝑘𝑘� � = ��𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑧𝑧) + 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿� 𝑘𝑘⁄  

𝐸𝐸 ��𝑥𝑥𝑥𝑥 𝑘𝑘� � = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑧𝑧)(𝑘𝑘 − 1) 𝑘𝑘⁄  

Thus, 

𝐸𝐸(𝑥𝑥𝑥𝑥) = 𝐸𝐸[𝑥𝑥2 𝑘𝑘⁄ ] + 𝐸𝐸 ��𝑥𝑥𝑥𝑥 𝑘𝑘� � = �𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + 𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 � 𝑘𝑘⁄ + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑧𝑧)(𝑘𝑘 − 1) 𝑘𝑘⁄  

For equal-variance case, this expression reduces to: 

𝐸𝐸(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + 𝜎𝜎2� 𝑘𝑘⁄ + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑧𝑧)(𝑘𝑘 − 1) 𝑘𝑘⁄  

Cov(x,z) in the above expression is just the covariance between random variables drawn from the 

target and lure distributions: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑧𝑧) = 𝜌𝜌𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

In the equal-variance case, this equation becomes: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥, 𝑧𝑧) = 𝜌𝜌𝜎𝜎2 

Thus: 

𝐸𝐸(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + 𝜎𝜎2� 𝑘𝑘⁄ + 𝜌𝜌𝜎𝜎2(𝑘𝑘 − 1) 𝑘𝑘⁄  

𝐸𝐸(𝑥𝑥𝑥𝑥) = �𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + 𝜎𝜎2 + 𝜌𝜌𝜎𝜎2(𝑘𝑘 − 1) 𝑘𝑘⁄ � 

The values computed above can now be plugged into:  

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝐸𝐸(𝑥𝑥𝑥𝑥) − 𝐸𝐸(𝑥𝑥)𝐸𝐸(𝑦𝑦) 
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𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = �𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + 𝜎𝜎2 + 𝜌𝜌𝜎𝜎2(𝑘𝑘 − 1) 𝑘𝑘⁄ � − 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑘𝑘⁄ � 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = �𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 + 𝜎𝜎2 + 𝜌𝜌𝜎𝜎2(𝑘𝑘 − 1) − 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2 � 𝑘𝑘⁄  

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = [𝜎𝜎2 + 𝜌𝜌𝜎𝜎2(𝑘𝑘 − 1)] 𝑘𝑘⁄  

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝜎𝜎2[1 + 𝜌𝜌(𝑘𝑘 − 1)] 𝑘𝑘⁄  

Now we are in a position to compute the variable of interest, namely, the variance of the x – y 

decision variable: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥 − 𝑦𝑦) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦) − 2𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) 

For the equal-variance case,  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥) = 𝜎𝜎2 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦) = 𝜎𝜎2[1 + 𝜌𝜌(𝑘𝑘 − 1)] 𝑘𝑘⁄  

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) = 𝜎𝜎2[1 + 𝜌𝜌(𝑘𝑘 − 1)] 𝑘𝑘⁄  

Thus, 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥 − 𝑦𝑦) = 𝜎𝜎2 + 𝜎𝜎2[1 + 𝜌𝜌(𝑘𝑘 − 1)] 𝑘𝑘⁄ − 2𝜎𝜎2[1 + 𝜌𝜌(𝑘𝑘 − 1)] 𝑘𝑘⁄  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥 − 𝑦𝑦) = 𝜎𝜎2 − 𝜎𝜎2�1 + 𝜌𝜌(𝑘𝑘 − 1)� 𝑘𝑘⁄  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥 − 𝑦𝑦) = 𝜎𝜎2�1 − �1 + 𝜌𝜌(𝑘𝑘 − 1)� 𝑘𝑘⁄ � 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥 − 𝑦𝑦) = 𝜎𝜎2�𝑘𝑘 − 1 + 𝜌𝜌(𝑘𝑘 − 1)� 𝑘𝑘⁄  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥 − 𝑦𝑦) = 𝜎𝜎2(𝑘𝑘 − 1)(1 − 𝜌𝜌) 𝑘𝑘⁄  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥 − 𝑦𝑦) = 𝜎𝜎2(1 − 𝜌𝜌)(1 − 1 𝑘𝑘⁄ ) 

Setting σ2 = 1 yields the final result for the variance of the x – y decision variable: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥 − 𝑦𝑦) = (1 − 𝜌𝜌)(1 − 1 𝑘𝑘⁄ ) 

This variance estimate can be used to compute d' because the square root of that value is the 

denominator of the d' formula. The numerator of the d' formula is the difference between the 

mean of x, which is equal to µTarget, and the mean of y, which is equal to (µTarget + ∑µLure) / k. 
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Because µLure = 0, the difference in the numerator reduces to µTarget - µTarget / k. This can also be 

written [(k-1)/k]µTarget, or (1-1/k) µTarget Thus, 

𝑑𝑑′ = (1 − 1 𝑘𝑘⁄ )𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �(1 − 1 𝑘𝑘⁄ )(1− 𝜌𝜌)⁄  

𝑑𝑑′ = 𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�(1− 1 𝑘𝑘⁄ ) �(1 − 𝜌𝜌)�  

𝑑𝑑′ = 𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �[𝑘𝑘 (𝑘𝑘 − 1)⁄ ](1 − 𝜌𝜌)⁄  
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Appendix B: Likelihoods 
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Goal 
Our goal in this section is to derive the likelihood functions for a memory decision on 
various trials under different decision models. These will take the form: 

ℒ𝑓𝑓(𝑟𝑟, 𝑐𝑐 ∣ 𝜃𝜃,𝐪𝐪) 

• 𝑓𝑓 indicates the memory/decision model in question (here we will consider different 
‘decision variable’ functions that people might use in an identification task: BEST, 
BEST-REST, BEST-ENSEMBLE, INTEGRATION). 
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• 𝑟𝑟 is the response (identified item): either none (∅) or the index of the item identified 
(𝑖𝑖), or the class of the item ((T)arget, (L)ure). 

• 𝑐𝑐 is the confidence level of that identification. 

• 𝜃𝜃 corresponds to the parameters of the model – the summary statistics of the target 
and lure memory distributions (which we will expand on below). 

• 𝐪𝐪 is the trial specification: a vector of length 𝑘𝑘 (the number of items present on a 
trial), with each element 𝑞𝑞𝑖𝑖 indicating whether that item was a target (T) or a lure 
(L). On a target-absent trial, all elements of 𝐪𝐪 are L, while in a target present trial, 
the first element is marked as the target (𝑞𝑞1 = T). 

Partitioning correlations into independent sources. 
Before we start with the derivations, it is useful to explain the mathematical isomorphism 
between considering many variables and their (homogenous) pairwise correlations, and 
factoring that representation into independent and shared sources of variance. 

Let 𝑏𝑏 be a random sample of the variability shared by all items on a given trial (the 
between-trial variability), distributed with mean 0 and variance 𝜎𝜎𝑏𝑏2. Let 𝑤𝑤𝑖𝑖 be a random 
sample of the independent variability for item 𝑖𝑖 on that trial 𝑗𝑗, distributed with mean 𝜇𝜇𝑤𝑤𝑖𝑖 
and variance 𝜎𝜎𝑤𝑤𝑖𝑖

2 . The net memory signal 𝑥𝑥𝑖𝑖 for item 𝑖𝑖 on that trial is the sum of 𝑏𝑏 and 𝑤𝑤𝑖𝑖, 
so 𝑥𝑥𝑖𝑖 = 𝑏𝑏 + 𝑤𝑤𝑖𝑖, with mean 𝜇𝜇𝑥𝑥𝑖𝑖 = 𝜇𝜇𝑤𝑤𝑖𝑖 and variance 𝜎𝜎𝑥𝑥𝑖𝑖

2 = 𝜎𝜎𝑏𝑏2 + 𝜎𝜎𝑤𝑤𝑖𝑖
2 . 

The covariance of the net memory strength for two items on a given trial (𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗) is 
determined entirely by their shared variability: 𝜎𝜎𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗 = 𝜎𝜎𝑏𝑏2, and their correlation is given 

by 𝜌𝜌𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗 = 𝜎𝜎𝑏𝑏
2

𝜎𝜎𝑥𝑥𝑖𝑖𝜎𝜎𝑥𝑥𝑗𝑗
= 𝜎𝜎𝑏𝑏

2

�𝜎𝜎𝑏𝑏
2+𝜎𝜎𝑤𝑤𝑖𝑖

2 �𝜎𝜎𝑏𝑏
2+𝜎𝜎𝑤𝑤𝑗𝑗

2
. 

Given the isomorphism between the ‘shared variability’ formulation and the ‘marginal 
correlation’ formulation, it is possible to carry out the subsequent derivations using either 
(a) the marginal net strengths of different items (𝑥𝑥𝑖𝑖), their variances (𝜎𝜎𝑥𝑥𝑖𝑖

2 ) and pairwise 
correlations (𝜌𝜌𝑥𝑥𝑖𝑖,𝑥𝑥𝑖𝑖′), or 
(b) using the shared (𝑏𝑏) and independent (𝑤𝑤𝑖𝑖) perturbations in memory strength, and their 
variances (𝜎𝜎𝑏𝑏2 and 𝜎𝜎𝑤𝑤𝑖𝑖

2 ). 

Since we can derive (a) from (b), and vice versa, they are mathematically 
indistinguishable, but we find the math to be more concise when pursuing option (b), so 
we will mostly lay out derivations in terms of those variables. However, where we find it 
useful, we will translate into marginal variances and pairwise item-item correlations. 
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Memory decisions on a given trial. 
We assume that identifying a given item 𝑖𝑖 at confidence level 𝑐𝑐 requires that 
(a) item 𝑖𝑖 has the highest memory signal on that trial, and 
(b) the net “decision variable” is above 𝑐𝑐 

The “decision variable” is a function of the memory signals from all 𝑘𝑘 items in that trial 
(𝑓𝑓(𝐱𝐱)), and what that function is differs based on the model (the “decision rule”): 
- for the “BEST” model, 𝑓𝑓(𝐱𝐱) = max(𝐱𝐱) 
- for the “BEST-REST” model, 𝑓𝑓(𝐱𝐱) = max(𝐱𝐱) − 1

𝑘𝑘−1
∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖≠max(𝐱𝐱)  

- for the “BEST-ENSEMBLE” model, 𝑓𝑓(𝐱𝐱) = max(𝐱𝐱) − 1
𝑘𝑘
∑ 𝑥𝑥𝑖𝑖𝑖𝑖  

- for the “INTEGRATION” model, 𝑓𝑓(𝐱𝐱) = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖  

Generic likelihoods 
We can write out fairly generic likelihoods for all of these models. The probability that a 
particular item with memory strength (𝑥𝑥𝑖𝑖) is identified as the target at confidence 
threshold 𝑐𝑐 is given by 

ℒ𝑓𝑓(𝑟𝑟 = 𝑖𝑖, 𝑐𝑐 ∣ 𝜃𝜃,𝐪𝐪) = 𝑃𝑃(𝑥𝑥𝑖𝑖 = max(𝐱𝐱),𝑓𝑓(𝐱𝐱) > 𝑐𝑐) 

We decompose this using the chain rule and the law of total probability into: 

𝑃𝑃(𝑥𝑥𝑖𝑖 = max(𝐱𝐱),𝑓𝑓(𝐱𝐱) > 𝑐𝑐) =

� 𝑃𝑃
∞

−∞
(𝑥𝑥𝑖𝑖)

  𝑃𝑃(𝑥𝑥𝑖𝑖 = max(𝐱𝐱) ∣ 𝑥𝑥𝑖𝑖)
  𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 ∣ 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 = max(𝐱𝐱)) 𝑑𝑑𝑥𝑥𝑖𝑖

 

The probability that a given 𝑥𝑥𝑖𝑖 is the largest element of 𝐱𝐱 is equal to the probability that 
all other elements of 𝐱𝐱 are smaller than 𝑥𝑥𝑖𝑖. Since the shared trial variance (𝑤𝑤) is a 
constant offset added to all items (𝑥𝑥𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝑏𝑏), the comparison of 𝑥𝑥𝑖𝑖 to all other items 
can be carried out by simply considering the independent variability for those items (𝐰𝐰 =
𝐱𝐱 − 𝑏𝑏). Consequently, the probability that a given 𝑥𝑥𝑖𝑖 is the probability that the 
corresponding 𝑤𝑤𝑖𝑖 is larger than all other 𝑤𝑤𝑗𝑗s. Moreover, because the 𝑤𝑤𝑖𝑖s are, by 
definition, independent for all elements of 𝐰𝐰, the probability that 𝑤𝑤𝑗𝑗 < 𝑤𝑤𝑖𝑖 for all 𝑗𝑗 is the 
product across all 𝑗𝑗s: 

𝑃𝑃(𝑥𝑥𝑖𝑖 = max(𝐱𝐱) ∣ 𝑥𝑥𝑖𝑖) = 𝑃𝑃(𝑤𝑤𝑖𝑖 = max(𝐰𝐰) ∣ 𝑤𝑤𝑖𝑖) = �𝑃𝑃
𝑗𝑗≠𝑖𝑖

(𝑤𝑤𝑗𝑗 < 𝑤𝑤𝑖𝑖 ∣ 𝑤𝑤𝑖𝑖) 

Furthermore, under the standard signal detection theory formulation, we assume that the 
variables are all normally distributed with a probability density function of 𝑛𝑛(𝑥𝑥 ∣ 𝜇𝜇,𝜎𝜎), 
and a cumulative distribution of 𝑁𝑁(𝑥𝑥 ∣ 𝜇𝜇,𝜎𝜎). This allows us to formally write out that: 

𝑃𝑃(𝑤𝑤𝑖𝑖) = 𝑛𝑛(𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑤𝑤𝑖𝑖 ,𝜎𝜎𝑤𝑤𝑖𝑖) 
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Moreover, since 𝑃𝑃(𝑤𝑤𝑗𝑗 < 𝑤𝑤𝑖𝑖 ∣ 𝑤𝑤𝑖𝑖) = 𝑁𝑁(𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑤𝑤𝑗𝑗 ,𝜎𝜎𝑤𝑤𝑗𝑗). We get: 

𝑃𝑃(𝑥𝑥𝑖𝑖 = max(𝐱𝐱) ∣ 𝑥𝑥𝑖𝑖) = �𝑁𝑁
𝑗𝑗≠𝑖𝑖

�𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑤𝑤𝑗𝑗 ,𝜎𝜎𝑤𝑤𝑗𝑗� 

Substituting both of these into our earlier equation, we get the following expression for 
the probability that a given item 𝑖𝑖 will be identified as the target on a given trial above a 
certain confidence level: 

ℒ𝑓𝑓(𝑟𝑟 = 𝑖𝑖, 𝑐𝑐 ∣ 𝜃𝜃,𝐪𝐪) =

� 𝑛𝑛
∞

−∞
(𝑤𝑤𝑖𝑖|𝜇𝜇𝑤𝑤𝑖𝑖 ,𝜎𝜎𝑤𝑤𝑖𝑖)

  �𝑁𝑁
𝑗𝑗≠𝑖𝑖

�𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑤𝑤𝑗𝑗 ,𝜎𝜎𝑤𝑤𝑗𝑗�

  𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖,𝑤𝑤𝑖𝑖 = max(𝐰𝐰)) 𝑑𝑑𝑤𝑤𝑖𝑖

 

Next, rather than referring to unique 𝜇𝜇𝑤𝑤𝑖𝑖 and 𝜎𝜎𝑤𝑤𝑖𝑖 for all 𝑖𝑖s, we will rely on the fact that 
these are the same for all items that are the same type (target or lure) and that 𝐪𝐪 encodes 
the type of item via each 𝑞𝑞𝑖𝑖. Thus, we can explicitly rewrite these in terms of 𝜇𝜇𝑇𝑇, (𝜇𝜇𝐿𝐿 =
0), 𝜎𝜎𝑇𝑇, and 𝜎𝜎𝐿𝐿 by relying on the indicator 𝐪𝐪 by using the notation 𝜇𝜇𝑞𝑞[𝑖𝑖] and 𝜎𝜎𝑞𝑞[𝑖𝑖] to refer to 
the mean and standard deviation for lures or targets, (depending on the type of item 𝑞𝑞[𝑖𝑖]). 

ℒ𝑓𝑓(𝑟𝑟 = 𝑖𝑖, 𝑐𝑐 ∣ 𝜃𝜃,𝐪𝐪) =

� 𝑛𝑛
∞

−∞
(𝑤𝑤𝑖𝑖|𝜇𝜇𝑞𝑞[𝑖𝑖],𝜎𝜎𝑞𝑞[𝑖𝑖])

  �𝑁𝑁
𝑗𝑗≠𝑖𝑖

�𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗]�

  𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖,𝑤𝑤𝑖𝑖 = max(𝐰𝐰)) 𝑑𝑑𝑤𝑤𝑖𝑖

 

The third term of the integrand (𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖,𝑤𝑤𝑖𝑖 = max(𝐰𝐰))) depends on the 
specific decision-variable model. Below, we show that for all models we consider, this 
boils down to a cumulative normal distribution of the form 𝑁𝑁�𝑐𝑐 ∣ 𝑀𝑀𝑓𝑓 , 𝑆𝑆𝑓𝑓�, where 𝑀𝑀𝑓𝑓 and 
𝑆𝑆𝑓𝑓 depend on the specific model. Thus, the general form of the likelihood of identifying a 
particular item 𝑖𝑖, with confidence 𝑐𝑐, for a given model 𝑓𝑓, is given by (𝑀𝑀𝑓𝑓 and 𝑆𝑆𝑓𝑓 depend 
on the form of the decision variable (𝑓𝑓) for each model): 

ℒ𝑓𝑓(𝑟𝑟 = 𝑖𝑖, 𝑐𝑐 ∣ 𝜃𝜃,𝐪𝐪) =

� 𝑛𝑛
∞

−∞
(𝑤𝑤𝑖𝑖|𝜇𝜇𝑞𝑞[𝑖𝑖],𝜎𝜎𝑞𝑞[𝑖𝑖])

  �𝑁𝑁
𝑗𝑗≠𝑖𝑖

�𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗]�

  𝑁𝑁�𝑐𝑐 ∣ 𝑀𝑀𝑓𝑓 , 𝑆𝑆𝑓𝑓� 𝑑𝑑𝑤𝑤𝑖𝑖

 



Running head: MODELS OF LINEUP MEMORY  88 
 

Model-specific terms 
The model-specific term in our likelihoods is the term 𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖,𝑤𝑤𝑖𝑖 = max(𝐰𝐰)), 
which we show below can be approximated as 1 − 𝑁𝑁�𝑐𝑐 ∣ 𝑀𝑀𝑓𝑓 , 𝑆𝑆𝑓𝑓� for all models. 

Dependencies of the decision variable 
The challenge in specifying these likelihood functions completely lies in the fact that, 
𝑓𝑓(𝐱𝐱) is not independent of 𝑤𝑤𝑖𝑖 = max(𝐰𝐰) for all but the most trivial 𝑓𝑓(⋅). The reason is 
that the conditional distributions of 𝑤𝑤𝑗𝑗s, given that they are smaller than 𝑤𝑤𝑖𝑖, will follow a 
truncated normal distribution (truncated at an upper bound 𝑤𝑤𝑖𝑖). We know of no analytical 
solution to 𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖,𝑤𝑤𝑖𝑖 = max(𝐰𝐰)), so we will adopt normal approximations via 
the mean and variance of the truncated normal distribution. 

Truncated Normal Approximation 
The mean (𝑚𝑚()) and variance (𝑣𝑣()) of a normal variable (𝑥𝑥) truncated at 𝑏𝑏 (such that 𝑥𝑥 <
𝑏𝑏) are functions of the mean (𝜇𝜇𝑥𝑥) and variance (𝜎𝜎𝑥𝑥2) of x, and 𝑏𝑏: 

𝛽𝛽 =
𝑏𝑏 − 𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

  𝑍𝑍 =
𝜙𝜙(𝛽𝛽)
𝛷𝛷(𝛽𝛽)

𝑚𝑚(𝜇𝜇𝑥𝑥,𝜎𝜎𝑥𝑥,𝑏𝑏) = 𝜇𝜇𝑥𝑥 − 𝜎𝜎𝑥𝑥𝑍𝑍
𝑣𝑣(𝜇𝜇𝑥𝑥,𝜎𝜎𝑥𝑥, 𝑏𝑏) = 𝜎𝜎𝑥𝑥2(1 − 𝑍𝑍𝑍𝑍 − 𝑍𝑍2)

 

where 𝜙𝜙(⋅) and 𝛷𝛷(⋅) are the pdf and cdf of the standard normal distribution. 

In the Best-Rest, Best-Ensemble, and Integration models, we approximate the distribution 
of ∑ 𝑤𝑤𝑗𝑗𝑗𝑗≠𝑖𝑖  conditioned on 𝑤𝑤𝑗𝑗 < 𝑤𝑤𝑖𝑖 as a normal distribution derived from the means and 
variances of the truncated 𝑤𝑤𝑗𝑗 variables: 

𝑃𝑃��𝑤𝑤𝑗𝑗
𝑗𝑗≠𝑖𝑖

∣ 𝑤𝑤𝑗𝑗 < 𝑤𝑤𝑖𝑖� ≈ 𝑛𝑛��𝑚𝑚
𝑗𝑗≠𝑖𝑖

(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖) ,��𝑣𝑣
𝑗𝑗≠𝑖𝑖

(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)� 

This approximation is not perfect, given that the number of items on a given trial (𝑘𝑘 ≈ 6) 
is quite small (so the central limit theorem should not be expected to hold), but is 
considerably better than simply ignoring the truncation. The graph below shows the 
quantile-quantile plots of this distribution, with the exact (numerically simulated) 
quantiles on the x-axis, and the approximation on the y-axis. Large deviations from the 
identity line (black), indicate a poor approximation. The blue lines (our truncated-normal 
approximation) do not deviate much from the identity line, while the red lines 
(corresponding to an approximation ignoring the truncation) are very far off (levels of 
transparency indicate the probability of a particular truncation 𝑃𝑃(𝑥𝑥) = 𝜙𝜙(𝑥𝑥)𝛷𝛷(𝑥𝑥)𝑘𝑘−1. 
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The BEST (Independent Observations) model. 
Under the BEST model (which we refer to as the Independent Observations model in the 
main text), the memory signal used for decision-making is simply the strongest memory 
signal: 

𝑓𝑓(𝐱𝐱) = max(𝐱𝐱) 

Since we care about the value of this function when 𝑤𝑤𝑖𝑖 = max𝐰𝐰: 

𝑤𝑤𝑖𝑖 = max(𝐰𝐰) ⟹ 𝑓𝑓(𝐱𝐱) = 𝑤𝑤𝑖𝑖 + 𝑏𝑏 

where 𝑏𝑏 is the shared variance offset for that trial, with 𝑏𝑏 ∼ 𝑛𝑛(0,𝜎𝜎𝑏𝑏). We are interested in 
evaluating 𝑃𝑃(𝑐𝑐 < 𝑤𝑤𝑖𝑖 + 𝑏𝑏). Given that 𝑏𝑏 is normally distributed with mean 0, we can 
write this out in terms of the cumulative normal with mean 𝑤𝑤𝑖𝑖, and standard deviation 𝜎𝜎𝑏𝑏: 

𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖,𝑤𝑤𝑖𝑖 = max(𝐰𝐰)) = 1 − 𝑁𝑁(𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖,𝜎𝜎𝑏𝑏) 

Or, in terms of our general expression 1 − 𝑁𝑁�𝑐𝑐 ∣ 𝑀𝑀𝑓𝑓 , 𝑆𝑆𝑓𝑓�: 

𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖
𝑆𝑆𝑓𝑓 = 𝜎𝜎𝑏𝑏
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The BEST-Rest model 
Under the Best-Rest model, the decision variable is the difference between the memory 
signal of the strongest item on a given trial, and the average memory strength of the other 
items, but the correlated trial variance, 𝑏𝑏 cancels out in the subtraction: 

𝑓𝑓(𝐱𝐱) =

𝑥𝑥𝑖𝑖 −
1

𝑘𝑘 − 1
�𝑥𝑥𝑗𝑗
𝑗𝑗≠𝑖𝑖

=

(𝑤𝑤𝑖𝑖 + 𝑏𝑏) −
1

𝑘𝑘 − 1
�(
𝑗𝑗≠𝑖𝑖

𝑤𝑤𝑗𝑗 + 𝑏𝑏) =

𝑤𝑤𝑖𝑖 −
1

𝑘𝑘 − 1
�𝑤𝑤𝑗𝑗
𝑗𝑗≠𝑖𝑖

 

Conditioned on 𝑤𝑤𝑖𝑖 being larger than all the 𝑤𝑤𝑗𝑗s, the 𝑤𝑤𝑗𝑗s will follow truncated normal 
distributions with means 𝑚𝑚(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖) and variances 𝑣𝑣(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖) (see the 
“truncated normal approximation” section). We will approximate the distribution of 
∑ 𝑤𝑤𝑗𝑗𝑗𝑗≠𝑖𝑖  (and thus 𝑓𝑓(𝐱𝐱)) conditioned on 𝑤𝑤𝑗𝑗 < 𝑤𝑤𝑖𝑖 as a normal distribution derived from the 
means and variances of the appropriate truncated normal distributions of 𝑤𝑤𝑗𝑗. Namely, the 
mean and variance of that sum, correpond to the sums of the means and variances of the 
components. Thus we get the expression: 

𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖,𝑤𝑤𝑖𝑖 = max(𝐰𝐰))

≈ 1 − 𝑁𝑁�𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖 −�
𝑚𝑚(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

𝑘𝑘 − 1
𝑗𝑗≠𝑖𝑖

,��
𝑣𝑣(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

(𝑘𝑘 − 1)2
𝑗𝑗≠𝑖𝑖

� 

Or, in terms of our general expression 1 − 𝑁𝑁�𝑐𝑐 ∣ 𝑀𝑀𝑓𝑓 , 𝑆𝑆𝑓𝑓�: 

𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖 −�
𝑚𝑚(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

𝑘𝑘 − 1
𝑗𝑗≠𝑖𝑖

𝑆𝑆𝑓𝑓 = ��
𝑣𝑣(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

(𝑘𝑘 − 1)2
𝑗𝑗≠𝑖𝑖

 

The Best-Ensemble model 
Under the Best-Ensemble model (which we refer to as the Ensemble model in the main 
text): 
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𝑓𝑓(𝐱𝐱) =

𝑥𝑥𝑖𝑖 −
1
𝑘𝑘
�𝑥𝑥𝑗𝑗
𝑗𝑗

=

(𝑤𝑤𝑖𝑖 + 𝑏𝑏) −
1
𝑘𝑘
�(
𝑗𝑗

𝑤𝑤𝑗𝑗 + 𝑏𝑏) =

𝑤𝑤𝑖𝑖 − 𝑤𝑤𝑖𝑖/𝑘𝑘 −
1
𝑘𝑘
�𝑤𝑤𝑗𝑗
𝑗𝑗≠𝑖𝑖

 

Again, 𝑏𝑏 is eliminated in the subtraction, and again we take the truncated normal 
approximation to the sum to approximate the conditional distribution of 𝑓𝑓(𝐱𝐱). Thus we 
approximate the conditional distribution of 𝑓𝑓(𝐱𝐱) as: 

𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖,𝑤𝑤𝑖𝑖 = max(𝐰𝐰))

≈ 𝑁𝑁�𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖(1 − 1/𝑘𝑘) −�
𝑚𝑚(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

𝑘𝑘
𝑗𝑗≠𝑖𝑖

,��
𝑣𝑣(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

𝑘𝑘2
𝑗𝑗≠𝑖𝑖

� 

Or, in terms of our general expression 𝑁𝑁�𝑐𝑐 ∣ 𝑀𝑀𝑓𝑓 , 𝑆𝑆𝑓𝑓�: 

𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖(1 − 1/𝑘𝑘) −�
𝑚𝑚(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

𝑘𝑘
𝑗𝑗≠𝑖𝑖

𝑆𝑆𝑓𝑓 = ��
𝑣𝑣(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

𝑘𝑘2
𝑗𝑗≠𝑖𝑖

 

The Integration model 
Under the Integration model, 𝑓𝑓(𝐗𝐗) = ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 . We again factor out the influence of 𝑏𝑏 and 𝑤𝑤 
on this sum (but in this case 𝑏𝑏 does not cancel out, as there is no subtraction): 

𝑓𝑓(𝐗𝐗) =

�𝑥𝑥𝑗𝑗
𝑗𝑗

=

�(
𝑗𝑗

𝑤𝑤𝑗𝑗 + 𝑏𝑏) =

𝑘𝑘𝑘𝑘 + �𝑤𝑤𝑗𝑗
𝑗𝑗

=

𝑤𝑤𝑖𝑖 + 𝑘𝑘𝑘𝑘 + �𝑤𝑤𝑗𝑗
𝑗𝑗≠𝑖𝑖

 

Since the sum over 𝑤𝑤 and 𝑏𝑏 are independent, their variances will add (the mean of 𝑏𝑏 is 0, 
so it plays no role). We still need to take an approximation to the sum of the truncated 𝑤𝑤 
distributions. Together, this yields a conditional distribution of: 
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𝑃𝑃(𝑓𝑓(𝐱𝐱) > 𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖,𝑤𝑤𝑖𝑖 = max(𝐰𝐰))

≈ 𝑁𝑁�𝑐𝑐 ∣ 𝑤𝑤𝑖𝑖 + �𝑚𝑚
𝑗𝑗≠𝑖𝑖

(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖),�𝑘𝑘2𝜎𝜎𝑏𝑏
2 + �𝑣𝑣

𝑗𝑗≠𝑖𝑖

(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)� 

Or, in terms of our general expression 𝑁𝑁�𝑐𝑐 ∣ 𝑀𝑀𝑓𝑓 , 𝑆𝑆𝑓𝑓�: 

𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖 + �𝑚𝑚
𝑗𝑗≠𝑖𝑖

(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

𝑆𝑆𝑓𝑓 = �𝑘𝑘2𝜎𝜎𝑏𝑏
2 + �𝑣𝑣

𝑗𝑗≠𝑖𝑖

(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)
 

Full likelihood model 
The likelihood of identifying a particular item 𝑖𝑖, with confidence 𝑐𝑐, for a given model 𝑚𝑚, 
is given by: 

ℒ𝑓𝑓(𝑟𝑟 = 𝑖𝑖, 𝑐𝑐 ∣ 𝜃𝜃,𝐪𝐪) =

� 𝑛𝑛
∞

−∞
(𝑤𝑤𝑖𝑖|𝜇𝜇𝑞𝑞[𝑖𝑖],𝜎𝜎𝑞𝑞[𝑖𝑖])

  �𝑁𝑁
𝑗𝑗≠𝑖𝑖

�𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗]�

  𝑁𝑁�𝑐𝑐 ∣ 𝑀𝑀𝑓𝑓 , 𝑆𝑆𝑓𝑓� 𝑑𝑑𝑤𝑤𝑖𝑖

 

𝜃𝜃 is a vector of parameters, consisting of 
- 𝜎𝜎𝑏𝑏: the standard deviation of the shared noise 𝑏𝑏 
- 𝜇𝜇𝑇𝑇, 𝜎𝜎𝑇𝑇: the mean and standard deviation of 𝑤𝑤 for targets 
- 𝜎𝜎𝐿𝐿: the standard deviation of 𝑤𝑤 for the lures (the mean for lures is taken to be 𝜇𝜇𝐿𝐿 = 0). 
𝐪𝐪 is the trial specification: a vector of length 𝑘𝑘 (the number of items), indicating whether 
or not each item 𝑞𝑞[𝑖𝑖] is a target (T) or a lure (L). 
𝑀𝑀𝑓𝑓 and 𝑆𝑆𝑓𝑓 depend on the form of the decision variable (𝑓𝑓) for each model. 

For all models, the probability that no item is identified is given simply as the probability 
of failing to identify any item at the lowest confidence level: 

ℒ(𝑟𝑟 = ∅, 𝑐𝑐 = ∅) = 𝑃𝑃(𝑓𝑓(𝐱𝐱) < 𝑐𝑐1) = 1 −�ℒ
𝑖𝑖

(𝑟𝑟 = 𝑖𝑖, 𝑐𝑐1) 

where 𝑐𝑐1 corresponds to the lowest confidence level. This just reflects the assumption 
that for any item to be identified at any confidence level, the overall decision variable has 
to exceed the lowest confidence level. 

Model 𝑀𝑀𝑓𝑓 𝑆𝑆𝑓𝑓 
BEST 𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖 𝑆𝑆𝑓𝑓 = 𝜎𝜎𝑏𝑏 
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BEST-REST 𝑀𝑀𝑓𝑓

= 𝑤𝑤𝑖𝑖 −�
𝑚𝑚(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

𝑘𝑘 − 1
𝑗𝑗≠𝑖𝑖

 
𝑆𝑆𝑓𝑓 = ��

𝑣𝑣(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)
(𝑘𝑘 − 1)2

𝑗𝑗≠𝑖𝑖

 

BEST-
ENSEMBLE 

𝑀𝑀𝑓𝑓
= 𝑤𝑤𝑖𝑖(1 − 1/𝑘𝑘)

−�
𝑚𝑚(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

𝑘𝑘
𝑗𝑗≠𝑖𝑖

 

𝑆𝑆𝑓𝑓 = ��
𝑣𝑣(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖)

𝑘𝑘2
𝑗𝑗≠𝑖𝑖

 

INTEGRATION 𝑀𝑀𝑓𝑓

= 𝑤𝑤𝑖𝑖 + �𝑚𝑚
𝑗𝑗≠𝑖𝑖

(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖) 

𝑆𝑆𝑓𝑓

= �𝑘𝑘2𝜎𝜎𝑏𝑏
2 + �𝑣𝑣

𝑗𝑗≠𝑖𝑖

(𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗],𝑤𝑤𝑖𝑖) 

Simplifications for special cases 
Although the general expression above for the likelihood can be used directly, it is 
somewhat unwieldy in that it obscures the relationship between parameters (e.g., 𝜎𝜎𝑇𝑇) as 
these are only used by indexing via 𝑞𝑞[𝑗𝑗]. We can omit 𝑞𝑞 from the likelihood by writing 
out special cases for each type of trial (target present or absent) and identification (target, 
lure, none). 

Model-independent part 
First, we can write out simpler expressions for the first two terms of the integrand that do 
not depend on the model: 
 

𝒰𝒰 = 𝑛𝑛(𝑤𝑤𝑖𝑖|𝜇𝜇𝑞𝑞[𝑖𝑖],𝜎𝜎𝑞𝑞[𝑖𝑖])  �𝑁𝑁
𝑗𝑗≠𝑖𝑖

�𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑞𝑞[𝑗𝑗],𝜎𝜎𝑞𝑞[𝑗𝑗]� 

Target-present trial, target ID: In this case (by definition), 𝑞𝑞[𝑖𝑖] =T, and for all 𝑗𝑗 ≠ 𝑖𝑖, 
𝑞𝑞[𝑗𝑗] =L, consequently: 

𝒰𝒰 = 𝑛𝑛(𝑤𝑤𝑖𝑖|𝜇𝜇𝑇𝑇 ,𝜎𝜎𝑇𝑇) 𝑁𝑁(𝑤𝑤𝑖𝑖 ∣ 0,𝜎𝜎𝐿𝐿)𝑘𝑘−1 

Target-present trial, lure ID: In this case, 𝑞𝑞[𝑖𝑖] =L, and 𝑞𝑞[𝑗𝑗] =T for one 𝑗𝑗, and L for the 
rest. Critically, because there are 𝑘𝑘 − 1 lures, we have to account for all possible lures 
that might be identified. Thus: 

𝒰𝒰 = (𝑘𝑘 − 1) 𝑛𝑛(𝑤𝑤𝑖𝑖|0,𝜎𝜎𝐿𝐿) 𝑁𝑁(𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑇𝑇 ,𝜎𝜎𝑇𝑇) 𝑁𝑁(𝑤𝑤𝑖𝑖 ∣ 0,𝜎𝜎𝐿𝐿)𝑘𝑘−2 

Target-absent trial, lure ID: In this case, 𝑞𝑞[𝑖𝑖] =L for all 𝑖𝑖, but all 𝑘𝑘 are equivalent, thus: 

𝒰𝒰 = 𝑘𝑘 𝑛𝑛(𝑤𝑤𝑖𝑖|0,𝜎𝜎𝐿𝐿) 𝑁𝑁(𝑤𝑤𝑖𝑖 ∣ 0,𝜎𝜎𝐿𝐿)𝑘𝑘−1 
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Model-dependent part 
The 𝑁𝑁�𝑐𝑐 ∣ 𝑀𝑀𝑓𝑓 , 𝑆𝑆𝑓𝑓� term of our likelihood (namely 𝑀𝑀𝑓𝑓 and 𝑆𝑆𝑓𝑓), depend on the model, and 
the types of items present on the trial that were not identified. Consequently, we can 
simplify them to omit 𝑞𝑞 by considering the two scenarios in which the non-identified 
items are all lures (target-present target ID, or target-absent lure ID), and those in which 
the non-identified items contain one target (target-absent lure ID). 

For the sake of conciseness, below we use the abbreviations (note that the functions 𝑚𝑚(⋅) 
and 𝑣𝑣(⋅) are defined in the “truncated normal approximation” section): 

𝑚𝑚𝐿𝐿<𝑖𝑖 = 𝑚𝑚(𝜇𝜇𝐿𝐿 ,𝜎𝜎𝐿𝐿 ,𝑤𝑤𝑖𝑖)
𝑚𝑚𝑇𝑇<𝑖𝑖 = 𝑚𝑚(𝜇𝜇𝑇𝑇 ,𝜎𝜎𝑇𝑇 ,𝑤𝑤𝑖𝑖)
𝑣𝑣𝐿𝐿<𝑖𝑖 = 𝑣𝑣(𝜇𝜇𝐿𝐿 ,𝜎𝜎𝐿𝐿 ,𝑤𝑤𝑖𝑖)
𝑣𝑣𝑇𝑇<𝑖𝑖 = 𝑣𝑣(𝜇𝜇𝑇𝑇 ,𝜎𝜎𝑇𝑇 ,𝑤𝑤𝑖𝑖)

 

Model 

Target-present trial, target 
ID or Target-absent trial, 
lure ID Target-present trial, lure ID 

BEST 𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖
𝑆𝑆𝑓𝑓 = 𝜎𝜎𝑏𝑏

 
𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖
𝑆𝑆𝑓𝑓 = 𝜎𝜎𝑏𝑏

 

BEST-REST 𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖 − 𝑚𝑚𝐿𝐿<𝑖𝑖

𝑆𝑆𝑓𝑓 = �
𝑣𝑣𝐿𝐿<𝑖𝑖

(𝑘𝑘 − 1)
 

𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖 −
(𝑘𝑘 − 2) 𝑚𝑚𝐿𝐿<𝑖𝑖 + 𝑚𝑚𝑇𝑇<𝑖𝑖

𝑘𝑘 − 1
 

𝑆𝑆𝑓𝑓 = �
(𝑘𝑘 − 2) 𝑣𝑣𝐿𝐿<𝑖𝑖 + 𝑣𝑣𝑇𝑇<𝑖𝑖

(𝑘𝑘 − 1)2

 

BEST-
ENSEMBLE 

𝑀𝑀𝑓𝑓 = ( 𝑤𝑤𝑖𝑖 − 𝑚𝑚𝐿𝐿<𝑖𝑖  )(1− 1/𝑘𝑘)

𝑆𝑆𝑓𝑓 = �(𝑘𝑘 − 1)𝑣𝑣𝐿𝐿<
𝑘𝑘2

 
𝑀𝑀𝑓𝑓 =

𝑤𝑤𝑖𝑖(𝑘𝑘 − 1) −𝑚𝑚𝐿𝐿<𝑖𝑖(𝑘𝑘 − 2) −𝑚𝑚𝑇𝑇<

𝑘𝑘

𝑆𝑆𝑓𝑓 = �𝑣𝑣𝑇𝑇<𝑖𝑖 + (𝑘𝑘 − 2)𝑣𝑣𝐿𝐿<
𝑘𝑘2

 

INTEGRATIO
N 

𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖 + (𝑘𝑘 − 1)𝑚𝑚𝐿𝐿<𝑖𝑖

𝑆𝑆𝑓𝑓 = �𝑘𝑘2𝜎𝜎𝑏𝑏2 + (𝑘𝑘 − 1)𝑣𝑣𝐿𝐿<𝑖𝑖
 

𝑀𝑀𝑓𝑓 = 𝑤𝑤𝑖𝑖 + 𝑚𝑚𝑇𝑇<𝑖𝑖 + (𝑘𝑘 − 2)𝑚𝑚𝐿𝐿<𝑖𝑖

𝑆𝑆𝑓𝑓 = �𝑘𝑘2𝜎𝜎𝑏𝑏2 + 𝑣𝑣𝑇𝑇<𝑖𝑖 + (𝑘𝑘 − 2)𝑣𝑣𝐿𝐿<𝑖𝑖
 

Constructing permutations. 
By combining the model and trial specific special case terms, we can write out all the 
special case likelihoods by substituting the appropriate 𝒰𝒰, 𝑀𝑀𝑓𝑓, and 𝑆𝑆𝑓𝑓 terms into the 
expression below (note that here, 𝑟𝑟 ∈ {T, L,∅}, rather than the index of the identified item 
–𝑖𝑖): 

ℒ𝑓𝑓(𝑟𝑟, 𝑐𝑐 ∣ 𝜃𝜃,𝐪𝐪) = �  
∞

−∞
𝒰𝒰 𝑁𝑁�𝑐𝑐 ∣ 𝑀𝑀𝑓𝑓 , 𝑆𝑆𝑓𝑓� 𝑑𝑑𝑤𝑤𝑖𝑖 
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So, for instance, if we were defining the likelihood of identifying a lure, on a target-
present trial (ℒ𝑓𝑓(𝑟𝑟 = L, 𝑐𝑐 ∣ 𝜃𝜃,𝐪𝐪 = {T, L, . . . , L})), under the BEST-ENSEMBLE model, 
we take: 

𝒰𝒰 = (𝑘𝑘 − 1) 𝑛𝑛(𝑤𝑤𝑖𝑖|0,𝜎𝜎𝐿𝐿) 𝑁𝑁(𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑇𝑇 ,𝜎𝜎𝑇𝑇) 𝑁𝑁(𝑤𝑤𝑖𝑖 ∣ 0,𝜎𝜎𝐿𝐿)𝑘𝑘−2

𝑀𝑀𝑓𝑓 =
𝑤𝑤𝑖𝑖(𝑘𝑘 − 1) −𝑚𝑚𝐿𝐿<𝑖𝑖(𝑘𝑘 − 2) −𝑚𝑚𝑇𝑇<𝑖𝑖

𝑘𝑘

𝑆𝑆𝑓𝑓 = �𝑣𝑣𝑇𝑇<𝑖𝑖 + (𝑘𝑘 − 2)𝑣𝑣𝐿𝐿<𝑖𝑖
𝑘𝑘2

 

Yielding a complete likelihood of: 

ℒ𝑓𝑓(𝑟𝑟 = L, 𝑐𝑐 ∣ 𝜃𝜃,𝐪𝐪 = {T, L, . . . , L}) =

� (
∞

−∞
𝑘𝑘 − 1) 𝑛𝑛(𝑤𝑤|0,𝜎𝜎𝐿𝐿)

  𝑁𝑁(𝑤𝑤𝑖𝑖 ∣ 𝜇𝜇𝑇𝑇 ,𝜎𝜎𝑇𝑇) 𝑁𝑁(𝑤𝑤𝑖𝑖 ∣ 0,𝜎𝜎𝐿𝐿)𝑘𝑘−2

  𝑁𝑁(𝑐𝑐 ∣
𝑤𝑤𝑖𝑖(𝑘𝑘 − 1) −𝑚𝑚𝐿𝐿<𝑖𝑖(𝑘𝑘 − 2) −𝑚𝑚𝑇𝑇<𝑖𝑖

𝑘𝑘
,

     �𝑣𝑣𝑇𝑇<𝑖𝑖 + (𝑘𝑘 − 2)𝑣𝑣𝐿𝐿<𝑖𝑖
𝑘𝑘2

) 𝑑𝑑𝑤𝑤𝑖𝑖

 

All simplifications can be assembled in this manner for a given model (target, lure id on 
target-present trials, and lure id on target-absent trials); however, we will not write them 
all out here. 
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