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The task of detecting the presence or absence of a stimulus based on a diagnostic evidence variable 
is a pervasive one. It arises in basic experimental circumstances, such as a pigeon making a decision 
about whether or not a stimulus was presented 10 seconds ago, as well as in applied circumstances, such 
as a witness making a decision about whether or not a suspect is the guilty perpetrator. Understanding 
how to properly conceptualize and analyze performance on a signal-detection task like that is nontrivial, 
and advances in this area have come mainly from experimental psychologists studying performance 
on basic memory and perception tasks. One illustrative example from the pigeon memory literature 
is considered here in some detail. Unfortunately, lessons learned by basic experimental psychologists 
(e.g., the value of using signal-detection theory to guide thinking, appreciating the distinction between 
discriminability and response bias, understanding the utility of receiver operating characteristic analysis, 
etc.), while having a major impact on applied fields such as diagnostic medicine, have not always been 
fully appreciated by applied psychologists working on issues pertaining to eyewitness misidentification. In 
this regard, signal-detection-based analyses can greatly enhance our understanding of important applied 
issues such as (a) the diagnostic accuracy of different police lineup procedures and (b) the relationship 
between eyewitness confidence and accuracy. The application of signal-detection theory to issues like 
these can reverse what many believe to be true about eyewitness identifications made from police lineups.
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A ubiquitous task, both in the laboratory and in every-
day life, involves making a decision about whether a stim-
ulus occurred (Outcome A) or not (Outcome B). A pigeon, 
for example, might have to decide whether a keylight was 
briefly presented 5 s ago (Outcome A) or not (Outcome B) 
by pecking a red choice key (decision: the keylight was 
presented) or a green choice key (decision: the keylight was 
not presented). Similarly, a human might have to decide 
whether a test word appeared on a previously presented list 
(Outcome A) or not (Outcome B) by saying “old” or “new.” 
Or an eyewitness to a crime might have to decide whether a 

person shown to them by the police is the one who commit-
ted the crime (Outcome A) or not (Outcome B) by making 
a positive identification or not. These examples are all from 
the domain of memory, but similar detection tasks come up 
in many other domains. In diagnostic medicine, for example, 
a patient has an illness (Outcome A) or not (Outcome B) and 
a medical test is used to make a decision about which condi-
tion applies to this patient. And in a jury trial, the defen-
dant is guilty (Outcome A) or not (Outcome B), and the jury 
makes a decision to convict or not. In all of these cases, a 
binary (dichotomous) decision has to be made based on what 
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is often assumed to be a continuous evidence variable. The 
question facing the decision maker in each of these cases 
is whether or not there is sufficient evidence along some 
continuous scale to warrant making the decision to classify 
the item into Outcome A or not.

The continuous evidence variable upon which the deci-
sion is based changes as a function of the task, but the deci-
sion-making logic is the same in each case. On recognition 
memory tasks, the continuous evidence variable is, theo-
retically, the internal strength of the memory signal (which 
ranges from low to high), and the question is whether or not 
the memory signal is strong enough to say (for example) 
that the suspect in the photo is the person who committed 
the crime. In the medical context, the continuous variable 
might be the blood count of some protein, and the question 
is whether or not the blood count is high enough to warrant 
the diagnosis. And in a jury trial, the evidence variable is 
literally the sum total of incriminating evidence against a 
defendant. Is there enough evidence to conclude that the 
defendant is guilty beyond a reasonable doubt or not?

Signal-detection theory offers an illuminating frame-
work for understanding how decisions like these are made 
(Green & Swets, 1966; Macmillan & Creelman, 2005). It 
not only provides a way to conceptualize why one decision 
is made instead of the other; it also suggests a measurement 
strategy that one would not likely hit upon in its absence. 
That measurement strategy is called receiver operating 
characteristic (ROC) analysis. ROC analysis has two broad 
purposes: (a) to distinguish between competing theories 
of decision making (e.g., between two nonidentical signal-
detection models, or between a signal-detection model and 
a non-detection model), and (b) to measure discriminability 
(i.e., the ability to distinguish between the two relevant states 
of the world) in theory-free fashion. The second purpose 
may be the more important of the two because it is how 
ROC analysis is used in applied settings (such as diagnostic 
medicine). It might seem counterintuitive that a method like 
ROC analysis, which is so closely tied to signal-detection 
theory, can be described as “theory free,” but it is. Signal-
detection theory brings you to and helps you conceptualize 
ROC analysis—indeed, it is hard to imagine conceiving of 
that approach in the absence of signal-detection theory—but 
once it does, for applied questions, the theory is no longer 
needed to interpret the data.

Using ROC Analysis to Test Theory
My own introduction to signal-detection theory (which 

eventually brought me to ROC analysis) began with a pigeon 
memory task. In a typical delayed matching-to-sample task, 
a trial begins with the presentation of (for example) a red 
or green light and then, after a delay, red and green choice 
keys are presented simultaneously. A response to the match-
ing color is rewarded with food, whereas a response to the 
non-matching color ends the trial. A variant of this basic 
task involves the use of initial sample stimuli that are asym-
metric in salience. For example, some investigations have 
involved sample stimuli consisting of presentations of food 
versus no food. Typically, the presentation of one of these 
samples is followed, after some delay, by a choice between 
two comparison stimuli (e.g., red and green). A response to 
one comparison is reinforced following samples of food, and 
a response to the other comparison is reinforced following 
samples of no food. A consistent finding in these studies is 
that performance following samples of food declines as the 
retention interval increases, whereas performance following 
samples of no food does not (Colwill, 1984; Colwill & Dick-
inson, 1980; Grant, 1991; Wilson & Boakes, 1985).

The same asymmetrical decay functions were observed 
by Grant (1991) when samples consisted of the presence 
versus absence of a variety of stimuli (including colors, 
shapes, and food). In each case, performance following 
the presence of an event declined as the retention inter-
val increased, but performance following the absence of 
an event did not. In still other cases, the sample stimuli 
consisted of a short-duration houselight (e.g., 2 sec) versus 
a long-duration houselight (e.g., 10 sec), or a white keylight 
that required 40 keypecks to extinguish it versus a white 
keylight that required only 10 keypecks (Colwill, 1984; 
Fetterman & MacEwen, 1989; Sherburne & Zentall, 1993; 
Spetch & Wilkie, 1983). In these cases, too, the forgetting 
functions following the two samples are usually asymmet-
ric. Figure 1 shows an example of asymmetric forgetting 
functions from a sample/no-sample task (Wixted, 1993).

Typically in these experiments, performance follow-
ing the less salient sample (e.g., no sample, no food, a short 
sample, or a sample requiring relatively few keypecks) 
begins at a high level and remains accurate as the delay 
interval increases. Performance following the more salient 
sample (e.g., a sample in a sample/no-sample procedure, 
food in a food/no-food procedure, a long sample, or a sample 
requiring many keypecks) decreases rapidly as the reten-
tion interval increases and eventually falls to well below 
50% correct (if the retention interval is long enough). What 
explains that pattern? Below, I present two competing theo-
retical accounts in some detail and describe an empirical 
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investigation designed to differentiate between them. The 
following discussion may seem far removed from impor-
tant social questions such as how to minimize eyewit-
ness misidentifications, but my contention is that any such 
impression is far from the truth.

The Default Response (High-Threshold) Hypothesis
Various theories have been offered to account for asym-

metric forgetting functions, but one theory is of particular 
interest because of its close connection to a theory of human 
recognition memory that prevailed in the years prior to the 
introduction of signal-detection theory. Colwill (1984), 
Wilson and Boakes (1985), and Grant (1991) all argued 
that the absence of a retention interval effect on no-sample 
trials suggests that memory plays no role on these trials. 
Instead, in the absence of memory, pigeons theoretically 
adopt a default response strategy of choosing the compari-
son stimulus associated with the absence of a sample. The 
default strategy is overridden on trials involving a sample 
so long as the memory trace has not completely faded. 
This explanation accounts for the flat retention function on 
no-sample trials because, whether the retention interval is 
short or long, no memory trace is ever present to override 
the default response. The same account explains why perfor-
mance on sample trials is often significantly below chance 
at longer retention intervals: When the memory trace fades 

completely, subjects revert to their default strategy and reli-
ably choose the wrong comparison stimulus.1

A theory along these lines makes perfect sense, but one 
important and nonobvious feature of the theory is its implicit 
assumption that memory for the sample exists in one of only 
two discrete states, present vs. absent (i.e., memory strength 
is construed as an all-or-none variable, not as a continuous 
variable). According to this theory, when memory for the 
sample is present, that memory guides the response, lead-
ing to a correct choice. When memory for the sample is 
not present, the default response is implemented instead. If 
memory operated in that fashion, then a simple, algebraic 
model could be applied to the data to estimate a variable of 
interest, namely, the proportion of sample trials in which 
the sample was remembered (p). Imagine that, for a given 
task, the true value of p happened to be .80 (i.e., on 80% 
of the sample trials, the sample is remembered and guides 
choice performance). What might the pigeon do on the 20% 
of sample trials (and on 100% of the no-sample trials) in 
which memory for the sample is absent? The assumption is 
that on these trials, the pigeon implements its default strat-
egy of choosing the no-sample alternative. The default strat-
egy might not be to always choose the no-sample alternative 
under no-memory conditions, so the probability of choos-
ing the no-sample alternative in the absence of memory can 
be represented by d, where d falls between 0 and 1. The 
value of d might be 1.0 (the pure default-response model), 
or it might instead be .90 or .80 without changing the basic 
pattern of results that this model predicts.

Generally speaking, the probability of choosing the 
sample alternative on a sample trial, p(“S” | S), is p (the 
probability that the sample is remembered) + (1 – p) times 
(1 – d), where 1 – p is the probability that the sample is not 
remembered and 1 – d is the probability that the sample 
alternative is selected on no-memory trials. If d = 1.0, then 
determining p is simple and straightforward: one need only 
measure the proportion of sample trials in which the sample 
alternative is chosen because p(“S” | S) = p + (1 – p) × 
(1 – d) = p + (1 – p) × 0 = p. Across conditions, one might 
find that the value of p is .80 in conditions involving a short 
retention interval and .20 in conditions involving a long 
retention interval (i.e., the probability of remembering the 
sample on sample trials decreases as the retention interval 
increases).

If the value of d is not equal to 1.0, then determining 
the value of p is slightly more complicated but still easy 
1 �In Figure 1, performance on sample trials is still above 50% correct at 
the longest retention interval, but when the retention interval is long 
enough to yield chance performance on asymmetric memory tasks, 
accuracy for the more salient sample typically falls well below 50%.
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Figure 1. Average hit rate (proportion of correct responses on sample 
trials) and correct rejection rate (proportion of correct responses on 
no-sample trials) as a function of retention interval for pigeons in 
Experiment 1 of Wixted (1993). (The error bars represent the standard 
errors associated with each mean value.)
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to do. The value of d is first determined by measuring the 
proportion of no-sample trials in which the no-sample alter-
native is correctly chosen. Imagine that on no-sample trials, 
pigeons choose the no-sample alternative 90% of the time 
(d = .90). This result would mean that when no memory for 
the sample is present (as must be true on no-sample trials), 
the bird’s default response is to choose the no-sample alter-
ative 90% of the time and to choose the sample alternative 
10% of the time. If d = .90, then performance on sample 
trials no longer provides a direct readout of p because, as 
indicated above, sample trial performance is theoretically 
equal to p + (1 – p) × (1 – d). Note that we can replace 
1 – d with g, where g is the probability of “guessing” 
that the sample was presented despite no memory for the 
sample. Because g = 1 – d, we can write the equation as 
p(“S” | S) = p + (1 – p) × g.

If the observed probability of correctly choosing the 
sample alternative on sample trials, p(“S” | S), is called 
the hit rate (HR) and the observed probability of incor-
rectly choosing the sample alternative on no-sample trials, 
p(“S” | NS), is called the false alarm rate (FAR), then this 
simple model yields two equations:

	 HR = p + (1 – p) × g	 (1)

and

	 FAR = g	 (2)

This model is diagrammed in Figure 2. Note that the 
equation for performance on no-sample trials (Equation 2) 
places the focus on the non-default response (i.e., the prob-
ability of choosing the sample alternative by default in the 
absence of memory), but it is just another way of indicating 
that on no-sample trials, the probability of correctly choos-
ing the no-sample alternative is equal to 1 – g, which is to 
say that it equals d.

Whereas the false alarm rate on no-sample trials 
provides a direct estimate of g, the hit rate on sample trials 
must be corrected to estimate p. This can easily be done by 
substituting FAR from Equation 2 for g in Equation 1:

	 HR = p + (1 – p) × FAR	 (3)

With a little algebraic rearrangement, we can solve for p 
to yield:

	 p = (HR – FAR) ∕ (1 – FAR)	 (4)

Using this equation, actual memory-based performance 
on sample trials can be directly computed from the data.

A concrete example will show how these equations work. 
Imagine that the size of the retention interval is manipulated 
within session, and performance on sample trials is 80% 

correct on short retention interval trials (HRshort = .80) and 
40% correct on long retention interval trials (HRlong = .40). 
Further imagine that on no-sample trials, the no-sample 
alternative is correctly chosen by default 80% of the time. 
In other words, for both short and long retention intervals, 
d = .80 and g = .20. Using the equations above, we can esti-
mate p for short and long retention interval trials:

	 pshort = (.80 – .20) ∙ (1 – .20) = .60 ∙ .80 = .75

	  plong = (.40 – .20) ∙ (1 – .20) = .20 ∙ .80 = .25

In other words, when the retention interval is short, the 
bird remembers the sample on 75% of the trials, but when 
the retention interval is long, the bird remembers the sample 
on only 25% of the trials.

This algebraic approach to conceptualizing memory 
performance corresponds exactly to how recognition 
memory theorists once conceptualized human recognition 
memory performance on list-learning tasks. The theory was 
called the high-threshold theory of recognition memory 
(Green & Swets, 1966). In fact, although rarely used today, 
Equation 4 is the standard correction for guessing formula 
that was often used to measure recognition memory perfor-
mance in list-learning experiments with humans (Macmil-
lan & Creelman, 2005).
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Figure 2. Illustration of the high-threshold account of recognition memory. 
On sample trials, with probability p, the sample is remembered and 
the sample choice alternative is chosen (a hit). With probability 1 − p, 
the sample is not remembered and the default response of choosing 
the no-sample choice alternative with probability d is implemented. 
Because d = 1 − g, this means that, with probability g, the sample 
choice alternative is chosen (a hit). With probability 1 − g, the no-sample 
choice alternative is chosen (a miss). On no-sample trials, memory is 
never present so the default response is always implemented. Thus, 
with probability g, the sample choice alternative is chosen (a false alarm). 
With probability 1 − g, the no-sample choice alternative is chosen 
(a correct rejection).
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Perhaps the most important point to appreciate here is 
that, according to this model, various intuitively appeal-
ing measures of performance fully conflate two distinct 
properties of the decision-making process that ought to be 
separately estimated. For example, consider the most obvi-
ous choice of a dependent measure on a sample/no-sample 
task, overall proportion correct. Expressed in terms of 
the hit rate and false alarm rate, proportion correct is 
equal to [HR × NSample + (1 – FAR) × NNo-sample ] ∙ N, where 
NSample = the number of sample trials, NNo-sample = the number 
of no-sample trials, and N = NSample + NNo-sample (i.e., N = the 
total number of trials). If NSample = NNo-sample, as would typi-
cally be true, then proportion correct reduces to:

	 Proportion correct = [HR + (1 – FAR) ] ∙ 2	 (5)

Note that 1 – FAR is simply the proportion correct on 
no-sample trials, so this expression is the average of propor-
tion correct on sample and no-sample trials.

Consider next what this proportion correct measure theo-
retically captures using the high-threshold model as a guide. 
We know from Equations 1 and 2 that HR = p + (1 – p) × g 
and FAR = g. Substituting these expressions for HR and 
FAR in Equation 5 yields:

	 Proportion correct = [p + (1 – p) g + (1 – g)] ∙ 2

which reduces to:

	 Proportion correct = [ p (1 – g) + 1] ∙ 2

Thus, according to this model, if the ability to remem-
ber the sample remains constant across conditions but the 
likelihood of guessing changes across conditions, propor-
tion correct will change. This change in the performance 
might lead the experimenter to conclude that memory in 
one condition is better than memory in the other, but that 
conclusion would be a mistake. The use of Equation 4 would 
reveal that memory is actually the same across both condi-
tions (assuming that the high-threshold theory is correct).

From the perspective of high-threshold theory, p is the 
key measure. It is, for example, the measure that would be 
expected to be impaired in a group of amnesic patients (for 
humans tested using list memory), and it is the measure 
that would be expected to decrease as the retention inter-
val increased (on a sample/no-sample task with birds or a 
list-memory task with humans). In addition, and critically, 
p would also be expected to remain constant (but the hit 
and false alarm rates would change) if the only aspect of 
performance that changed across conditions was g. Accord-
ing to Equations 1 and 2, both the hit rate and false alarm 
rate would be expected to increase as g increased, and both 
would decrease as g decreased. But only p is a measure 

of the ability to discriminate between the two states of the 
world. If p = 0, then performance on sample and no-sample 
trials would be the same (HR = FAR). In that case, the bird 
would show no evidence of being able to discriminate 
sample from no-sample trials. If p = 1, then performance 
on sample and no-sample trials would always be perfect if 
g = 0 (though it could be as low as 50% correct if g = 1).

The value of g is an experimentally manipulable vari-
able. For example, a high rate of guessing (i.e., a high 
value of g) can be induced by arranging a differentially high 
payoff for correct sample choices (for pigeons) or correct 
“old” decisions (for humans on a list-learning task). A low 
rate of guessing (i.e., a low value of g) can be induced by 
arranging a differentially high payoff for correct no-sample 
choices (for pigeons) or correct “new” decisions (for humans 
on a list-learning task). This means that a set of hit and false 
alarm rate pairs, each of which is theoretically associated 
with a single level of memory-based performance (i.e., a 
single level of p), can be obtained across conditions by vary-
ing g. With those data in hand, one can plot hit rate vs. false 
alarm rate, and the resulting plot is known as the ROC.

Critically, Equation 3 provides the predicted shape of the 
ROC. That equation is in the form of the familiar equation 
for a straight line, y = m × x + b. In other words, according 
to Equation 3, the ROC, which is a plot of HR vs. FAR with 
memory (p) held constant, should be linear. The problem 
is that empirical ROCs are almost invariably curvilinear, 
which is why this simple model has been rejected, both in 
studies of human memory and (sometimes) pigeon memory. 
Signal-detection theory, which is considered next, offers a 
more viable interpretation of ROC data. For the moment, 
the most important take-home message is that a theoret-
ical analysis of performance on a detection task draws a 
distinction between two distinct aspects of memory perfor-
mance: response bias vs. the ability to differentiate between 
the two relevant states of the world. It is easy to lose sight of 
the importance of this distinction, which is what happened 
when researchers investigated recognition memory in the 
real world (an issue addressed later in this article).

Signal-Detection Theory 
Figure 3 illustrates the signal-detection interpretation of 

performance on the sample/no-sample task (Wixted, 1993). 
The x-axis in this case represents the subjective strength 
of memory that a sample was presented earlier in the trial. 
Whereas the threshold model assumes the complete absence 
of a memory signal on these trials (which is intuitively sensi-
ble given that no sample was presented), the signal-detection 
model instead assumes that the act of retrospection always 
produces at least some false sense of sample occurrence. 
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distribution that exceeds the criterion and the lower the hit 
rate will be (assuming the criterion remains fixed as the 
retention interval increases). Eventually, the sample distri-
bution will coincide with the no-sample distribution, and at 
that point, the hit rate will equal the false alarm rate. This is 
the empirical pattern that is observed on sample/no-sample 
tasks. That is, the hit rate decreases but the false alarm rate 
(or 1 – the false alarm rate, which is the no-sample measure 
plotted in Figure 1) remains constant.

Which interpretation is more consistent with the avail-
able evidence? The high-threshold account or the signal-
detection account? As noted above, one way to answer that 
question is to empirically examine the shape of the ROC. 
Variations in payoffs described earlier, which were assumed 
to affect g (the probability of guessing “sample” or “old” 
despite the absence of memory) are now assumed to affect 
the location of the decision criterion, c. Payoffs that encour-
age choosing the sample alternative move the criterion to 
the left, such that more of the sample distribution and more 
of the no-sample distribution exceed it (corresponding to 
higher hit and false alarm rates). Payoffs that encourage 
choosing the no-sample alternative move the criterion to the 
right, such that less of the sample distribution and less of the 
no-sample distribution exceed it (corresponding to lower hit 
and false alarm rates).

In this model, the location of c on the memory axis is 
conceptually related to the magnitude of g in the high-
threshold model. For example, as c moves to the left, or as g 
increases, the hit and false alarm rates both increase, an effect 
that would be referred to as a liberal response bias. What is 
the measure of memory in the signal-detection account that 
corresponds to the value of p in the high-threshold model? 
Critically, the relevant measure of memory is not a probability 
because there is no discrete event that corresponds to the prob-
abilistic occurrence of memory for the prior presentation of the 
sample. Instead, there are only degrees of memory strength. 
Overall memory performance is high to the extent that the 
average strength of memory on sample trials is high compared 
to the average strength of memory on no-sample trials. That 
is, memory ability is theoretically captured by the distance 
between the means of the sample and no-sample distributions 
(scaled in standard deviation units), which is a measure known 
as d′. Theoretically, d′ indicates how well the organism’s brain 
separates the population of memory signals associated with 
sample trials vs. the population of memory signals associated 
with no-sample trials. In Figure 3, d ′ = 3 (i.e., the means of 
the two distributions are three standard deviations apart).

One virtue of the signal-detection approach is that it 
naturally predicts a curvilinear ROC. Figure 4 shows two 
ROC plots, one that corresponds to a high d ′ (e.g., as might 

This is its most theoretically interesting departure from the 
high-threshold model. The strength of that false memory 
signal will vary from trial to trial due to noise in the neural 
system, but its mean value will be relatively low. Everything 
is the same on sample trials except that the average strength 
of the memory signal will be higher. Because the two distri-
butions of memory strength signals partially overlap, there 
is no specific memory strength value that perfectly distin-
guishes between sample trials and no-sample trials. This is 
why the theory assumes that a criterion memory strength 
value, c, is set. On any trial in which the memory strength 
value exceeds the criterion, the sample alternative is chosen. 
This includes some no-sample trials in which the memory 
strength signal happens to be arbitrarily high. Thus, a 
false alarm in this model is based on a strong enough false 
memory signal, not on a random guess that occurs despite 
the complete absence of a memory signal (as in the thresh-
old model). The proportion of the no-sample distribution 
that exceeds the criterion represents the false alarm rate. 
The proportion of the sample distribution that exceeds the 
criterion represents the hit rate. In this example, the hit 
rate ≈ .93 and the false alarm rate ≈ .07.

A longer retention interval will have no effect on the 
mean of the noise distribution (i.e., on the no-sample distri-
bution) because it does not matter how long ago nothing 
occurred. In other words, on these trials, no memory trace is 
created that fades away. By contrast, the mean of the sample 
distribution will decrease with increasing retention interval 
as memory for the sample weakens. Thus, the longer the 
retention interval, the smaller the proportion of the sample 

"No Sample"

Sample
No Sample

"Sample"

c
STRENGTH OF MEMORY SIGNAL

Figure 3. A graphical illustration of signal-detection theory. According to 
this theory, the memory system always has some subjective sense that 
the sample was presented, and the strength of that signal varies from trial 
to trial. On no-sample trials, the mean of the distribution is low, whereas 
on sample trials it is higher. On a given trial, the sample choice alternative 
is chosen if the strength of the memory signal exceeds the decision 
criterion, c. Otherwise, the no-sample alternative is chosen.
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on a higher percentage of both sample and no-sample trials, 
thereby increasing both the hit rate and the false alarm rate 
relative to the neutral condition. To put this another way (and 
to make the results more relatable to the later discussion of 
eyewitness memory), the birds were more inclined to choose 
the sample alternative even when they were not especially 
confident that the sample had been presented. In the conser-
vative condition (leftmost ROC point in each condition), the 
probability of food reinforcement was asymmetrical in the 
other direction such that a correct sample choice was rein-
forced with probability .20, whereas a correct no-sample 
choice was reinforced with probability 1.0. These contingen-
cies induced the birds to choose the no-sample alternative 
on a higher percentage of both sample and no-sample trials, 
thereby decreasing both the hit rate and the false alarm rate 
relative to the neutral condition. In other words, the birds 
would only choose the sample alternative (with a payoff prob-
ability of only .20) when they were highly confident that the 
sample had in fact been presented on that trial. This would 
only occur if the memory strength on that trial were strong 
enough to exceed the high setting of the decision criterion.

The empirical ROC data are obviously closer to what the 
signal-detection model predicts than what the high-threshold 
model predicts. The same result is almost always observed 
on human memory tasks as well. As a result, signal-detec-
tion theory is generally regarded as the dominant account 
of human recognition memory, and d ′ has become the stan-
dard dependent measure. This discriminability measure is 
essentially the same as log d in the Davison-Tustin (1978) 
model. Note that variations of the discrete-state high-thresh-
old model can be found that will accommodate curvilinear 
ROC data, but my only purpose thus far has been to illus-
trate basic conceptual distinctions that separate the signal-
detection view of memory from alternative theoretical views 
and to illustrate how the effort to test competing theoretical 
views brings one to ROC analysis.

To the Courtroom
The battle between high-threshold and signal-detection 

accounts of recognition memory has also played out (and 
in one form or another continues to play out) in the basic 
human memory literature. Although it sometimes seems 
like an abstract debate of interest only to math modelers, 
an argument could be made that a detailed inquiry into 
the underlying theoretics of recognition memory serves to 
underscore critical distinctions that are easily overlooked 
when the focus shifts to recognition memory in the real 
world (such as eyewitness memory). A critical distinction 
in the analyses considered above, and as noted earlier, is 

occur if a short retention interval is used) and another that 
corresponds to a low d ′ (e.g., as might occur if a long reten-
tion interval is used). In fact, these are actual data from a 
sample/no-sample experiment reported by Wixted (1993). 
Note the curvilinearity of the data in each case, which is 
more consistent with the signal-detection view than the 
pure threshold view (the dashed lines show the linear trend 
predicted by the threshold model). Again, the interesting 
theoretical implication of this result is that there are no 
“no-memory trials.” Instead, on every trial, the bird theo-
retically queries memory for evidence that that a sample 
was presented on that trial, and on every trial, a signal is 
returned by the brain. Sometimes (e.g., on no-sample trials), 
the signal that is returned is just noise in the nervous system. 
When a signal is returned, the bird then determines whether 
that signal is strong enough to decide that the sample was in 
fact presented (i.e., if the strength of that signal exceeds c).

The ROC data in this case were obtained by experi-
mentally manipulating the birds’ decision criterion. In the 
neutral condition (the middle ROC point in each condition), 
the payoff for a correct “no-sample” decision was the same 
as the payoff for a correct “sample” decision. In both cases, 
the probability of food reinforcement for a correct response 
was .60. In the liberal condition (rightmost ROC point in 
each condition), the probability of food reinforcement was 
asymmetrical such that a correct sample choice was rein-
forced with probability 1.0, whereas a correct no-sample 
choice was reinforced with probability 0.20. These contin-
gencies induced the birds to choose the sample alternative 

Figure 4. Empirical receiver operating characteristic (ROC) curves for 
two different retention intervals used in Experiment 3 of Wixted (1993). 
The short retention interval was 0.5 s (Short Delay), whereas the long 
retention interval was 12 s (Long Delay). Each graph depicts the hit 
rate vs. the false alarm rate for three reinforcement outcome conditions. 
The solid curves represent the best-fitting ROC functions based on 
signal-detection theory, whereas the dashed lines represent the best-
fitting linear functions based on high-threshold theory.
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the well-known distinction between discriminability and 
response bias. In the high-threshold model, these two prop-
erties are captured by p and g, respectively, and in the signal-
detection model, they are captured by d ′ and c, respectively. 
Although the details of both models cannot simultaneously 
be true, the distinction they both draw between discrim-
inability and response bias is similar and is far more impor-
tant than it might seem to be at first glance. To see why, I 
turn next to the issue of the reliability of eyewitness iden-
tification and to the lab-based recognition memory tasks 
that are most commonly used to investigate it. For decades, 
this research has been mostly carried out without regard for 
the distinction between discriminability and response bias 
(for some notable exceptions, see Ebbesen & Flowe, 2002; 
Horry, Palmer, & Brewer, 2012; Meissner, Tredoux, Parker, 
& MacLin, 2005; Palmer & Brewer, 2012), and the reported 
results have had a profound effect on practices in the legal 
system. Without the guidance of basic theories of recog-
nition memory (theories that protect one from compelling 
but often faulty intuitions), the argument can be made that 
eyewitness identification researchers got it wrong in several 
ways (Gronlund, Mickes, Wixted, & Clark, 2015).

From my perspective, this is a story about how basic 
psychological science and applied psychological science 
have drifted much too far apart from one another in recent 
years. As a result, mistakes have been made. My point is 
certainly not that eyewitness ID researchers got everything 
wrong, or that all eyewitness ID researchers made the influ-
ential mistakes I review next. The issues that the field got 
right (e.g., that memory is malleable and that eyewitness 
identification tests should not be biased against a suspect) 
are not controversial and are also not uniquely informed 
by signal-detection theory and ROC analysis. By contrast, 
the ones that the field got wrong are uniquely informed by 
signal-detection theory and ROC analysis, and those are the 
issues I focus on here.

Eyewitness Misidentification in the Real World
Many people, including, I would guess, most readers of 

this article, believe that eyewitness memory is inherently 
unreliable. And why not? Of the 334 wrongful convictions 
that have been overturned to date by DNA evidence since 
1989, more than 70% were attributable, at least in part, to 
eyewitness misidentification (Innocence Project, 2015). A 
statistic like that is hardly a testimony to the impressive reli-
ability of eyewitness identification. Instead, it seems like 
an obvious testimony to the catastrophic unreliability of 
eyewitness identification.

How can such tragic errors be reduced? For more than 
30 years, applied psychological science has been brought 

to bear on this issue by using mock-crime laboratory stud-
ies. In a typical mock-crime study, participants (e.g., under-
graduates) witness a mock crime (e.g., by watching a video 
of someone committing a crime, such as snatching a purse) 
and are later shown a photo lineup in which the perpetra-
tor (the target) is either present or absent. A target-present 
lineup includes the perpetrator along with (usually five) 
similar fillers; a target-absent lineup is the same except that 
the perpetrator is replaced by another similar filler, as illus-
trated in Figure 5. That replacement filler can be designated 
as the innocent suspect. Note that not all studies pre-desig-
nate an innocent suspect in target-absent lineups, which 
adds complexity to the analysis of the data without chang-
ing anything of substance. Thus, in what follows, I shall 
assume that both target-present and target-absent line-
ups always have one suspect and five fillers, as real-world 
lineups typically do. Just as in a real-world investigation, 
a witness presented with a photo lineup in a mock-crime 
study can (a) identify a suspect (a suspect ID of an innocent 
or a guilty individual), (b) identify a filler (a filler ID), or 
(c) reject the lineup (no ID).

A suspect ID is the most consequential outcome of a 
lineup procedure because, as a general rule, only suspects 
who are identified from a lineup are placed at risk of pros-
ecution. A suspect ID from a target-present lineup right-
fully imperils the guilty perpetrator, but a suspect ID from a 

Perpetrator

Guilty suspect

Target-Present Lineup Target-Absent Lineup

Designated 
innocent suspect

Figure 5. In a typical mock-crime study, participants view a simulated 
crime committed by a perpetrator and are later tested with either a target-
present lineup (containing a photo of the perpetrator and five similar 
fillers) or a target-absent lineup in which the photo of the perpetrator 
has been replaced by the photo of another filler. In this example, the 
individual depicted in the replacement photo serves the role of the 
innocent suspect. In this type of study, mistakenly identifying the innocent 
“suspect” has traditionally been the error of most interest.
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target-absent lineup wrongfully imperils an innocent suspect. 
A mistaken filler ID does not imperil anyone because the 
fillers are known to be innocent (e.g., the fillers might be 
database photos of people imprisoned in another state). The 
two key dependent measures in a mock-crime study are the 
correct ID rate (proportion of target-present lineups from 
which the guilty suspect is identified) and the false ID rate 
(proportion of target-absent lineups from which the innocent 
suspect is identified). In other words, this is a recognition task 
in which the hit rate and the false alarm rate are measured. 
Therefore, one’s thoughts should already be turning to signal-
detection theory and ROC analysis, but many years went by 
(and extensive reforms were made to the legal system) before 
the first eyewitness ROC analysis was ever performed.

Simultaneous vs. Sequential Lineups in the Lab. 
In light of the DNA exoneration cases, a major goal of 

scientific research (understandably) has been to find ways 
to reduce the false ID rate without appreciably reducing the 
correct ID rate. One simple change in the way that photo 
lineups are administered has long been thought to help 
protect innocent suspects from being mistakenly identified 
without much cost in terms of correctly identifying guilty 
suspects. Specifically, instead of presenting all six photos 
simultaneously (the traditional approach, as illustrated in 
Figure 5), the lineup photos are presented sequentially (one 
at a time) for individual yes/no decisions (Lindsay & Wells, 
1985). The test effectively stops when someone is identified 
as the perpetrator. If the sequential test continues beyond 
that point, only the first identification typically counts 
(second laps are usually not allowed in lab studies, though 
they tend to be allowed in real-world sequential lineups).

Mock-crime studies have often found that sequential 
lineups result in a lower false ID rate. These same stud-
ies have often found that sequential lineups also lower the 
correct ID rate but to a lesser extent. In a review of the liter-
ature, Steblay, Dysart, and Wells (2011) reported that the 
average HR and FAR for the simultaneous lineup procedure 
equal 0.52 and 0.28, respectively, whereas the correspond-
ing values for the sequential lineup procedure equal 0.44 and 
0.15, respectively. Thus, on average, the sequential proce-
dure yields both a lower HR and a lower FAR—an ambigu-
ous outcome in terms of identifying the better procedure. 
Still, the drop in the FAR exceeds the drop in the HR. To 
the untrained eye, that seems to suggest a sequential supe-
riority effect.

In an effort to quantify the diagnostic accuracy of the 
competing lineup procedures in terms of a single measure, 
eyewitness identification researchers have long relied on 
a statistic known as the diagnosticity ratio (correct ID 

rate ∕ false ID rate). Although the issue is contested (e.g., 
Clark, 2012; Gronlund, Carlson, Dailey, & Goodsell, 2009), 
some meta-analytic reviews of the mock-crime literature 
have concluded that the diagnosticity ratio is generally higher 
for sequential lineups (Steblay, Dysart, Fulero, & Lindsay, 
2001; Steblay et al., 2011). For example, using the numbers 
reported by Steblay et al. (2011), the diagnosticity ratio for the 
sequential lineup procedure (0.44 ∕ 0.15 = 2.93) is higher than 
that of the simultaneous lineup procedure (0.52 ∕ 0.28 = 1.86), 
which led them to conclude that the sequential procedure 
is superior. The diagnosticity ratio increases because, when 
switching to the sequential procedure, the proportional drop 
in the FAR exceeds the proportional drop in the HR. That 
in itself seems like a positive outcome, thereby favoring the 
sequential procedure. The case in favor of the sequential 
procedure seems even more secure when one considers what 
the diagnosticity ratio actually measures. If half the lineups 
are target-present lineups and half are target-absent lineups 
(which is true of most of the relevant studies), then the diag-
nosticity ratio is a direct measure of the posterior odds of 
guilt. If the sequential procedure yields a higher diagnosticity 
ratio, then not only is the FAR rate lower, the posterior odds 
that an identified suspect is actually guilty are higher (i.e., 
the ID is more trustworthy) compared to a suspect identified 
from a simultaneous lineup. On the surface, the case in favor 
of the sequential procedure seems very strong indeed. Based 
on this interpretation of the empirical literature, approx-
imately 30% of law enforcement agencies in the United 
States that use photo lineups have now adopted the sequen-
tial procedure (Police Executive Research Forum, 2013). Not 
many areas of psychological research can rival the real-world 
impact that eyewitness identification research has had.

Note that when using a lineup procedure, the essence 
of the task is to discriminate between innocent and guilty 
suspects. It is a detection task in much the same way that 
a sample/no-sample task with a pigeon is. It seems trickier 
because of the presence of fillers (what should one do with a 
filler ID?), but fillers have not stood in the way of computing 
the hit and false alarm rates that have convinced many that 
sequential lineups are diagnostically superior to simultaneous 
lineups. If there are 100 target-present lineups, and witnesses 
(a) identify the suspect in 52 of the lineups, (b) identify a 
filler in 16 of the lineups, and (c) reject the remaining 32 line-
ups, the hit rate is 52 ∕ 100 = .52. Similarly, if there are 100 
target-absent lineups, and witnesses (a) identify the suspect 
in 24 of the lineups, (b) identify a filler in 32 of the lineups, 
and (c) reject the remaining 44 lineups, the false alarm rate 
is 24 ∕ 100 = .24. Thus, filler IDs are not typically counted 
when computing hit and false alarm rates (nor should they 
be). Ideally, the goal is to get the FAR as close to 0 as possible 
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and the HR as close to 1.0 as possible. In other words, the goal 
is to maximize discriminability between innocent and guilty 
suspects. The sequential lineup procedure seems to do a good 
job of reducing the FAR without compromising the HR too 
much (though it would be better if it actually increased rather 
than slightly decreasing the HR). It may seem as if the data 
suggest that sequential lineups achieve the goal of increasing 
discriminability, but consider for a moment the fact that, so 
far, a compelling story in favor of the sequential procedure 
has been told with no mention of a measure of discriminabil-
ity (and with no look at the ROC).

As discussed earlier in connection with high-threshold 
theory vs. signal-detection theory, a singular pair of hit and 
false alarm rates does not characterize the discriminabil-
ity of a procedure. Instead, the whole ROC does. To say 
that the goal is to maximize discriminability is to say that 
the goal is to achieve the highest possible ROC. The ROC 
depicts the family of achievable hit and false alarm rates 
associated with a particular condition. If Condition A yields 
a higher ROC than Condition B, it means that both states of 
the world can be more accurately categorized in Condition A 
compared to Condition B. That is, if it yields a higher ROC, 
Condition A is capable of achieving both a higher HR and a 
lower FAR than Condition B.

Instead of performing ROC analysis, researchers in the 
field of eyewitness identification computed the diagnostic-
ity ratio for each condition in an effort to determine which 
lineup format is superior. The problem is that this intuition-
based approach cannot reveal the diagnostically superior 
condition when the HR and FAR both change in the same 
direction (which is the case here: the HR and the FAR are 
both lower for the sequential procedure). Why not? The 
reason why a higher diagnosticity ratio does not identify 
the superior procedure is most easily appreciated by exam-
ining a basic property of an ROC curve. Keep in mind that 
an ROC shows the full range of hit and false alarm rates 
that are achievable as response bias ranges from liberal to 
conservative (while holding discriminability constant). An 
important consideration that has only recently come to be 
understood in the field of eyewitness identification is that 
a natural consequence of more conservative responding 
(in addition to the fact that the correct and false ID rates 
decrease) is that the diagnosticity ratio increases (Gronlund, 
Wixted, & Mickes 2014; Wixted & Mickes, 2012, 2014). 
Critically, this occurs whether more conservative respond-
ing is induced for the simultaneous procedure (e.g., using 
instructions that encourage eyewitnesses not to make an ID 
unless they are confident of being correct) or more conser-
vative responding is induced by switching to the sequential 
procedure. The diagnosticity ratio continues to increase as 

responding becomes ever more conservative, all the way to 
the point where both the correct and false ID rates approach 
0, in which case administering a lineup would be practically 
useless even though the diagnosticity ratio would be very 
high (Wixted & Mickes, 2014). Thus, achieving the highest 
possible diagnosticity ratio by inducing ever more conserva-
tive responding is not a logical goal to pursue.

As noted by a recent National Academy committee 
report on eyewitness identification, “ROC analysis repre-
sents an improvement over a single diagnosticity ratio” 
(National Research Council, 2014, p. 80). To be sure, the 
committee did not judge ROC analysis to be such a flaw-
less methodology that the field can now stop worrying about 
the best way to compare lineup procedures and use ROC 
analysis forevermore. Instead, the committee also expressed 
reservations about confidence-based ROC analysis because 
different eyewitnesses might exhibit differences in the incli-
nation to express a certain level of confidence, such as high 
confidence. That is, the memory strength that warrants high 
confidence for one eyewitness might warrant only medium 
or low confidence for another. Thus, although the commit-
tee agreed that ROC analysis represents an advance over the 
diagnosticity ratio, it also called for new research to identify 
even better diagnostic methodologies. For the time being, 
however, there are only two choices: the diagnosticity ratio 
and ROC analysis. Given that choice, ROC analysis is clearly 
the better option. This is an important point to consider 
because the two approaches (namely, the diagnosticity ratio 
vs. ROC analysis) can yield opposite answers to the question 
of which lineup procedure is diagnostically superior.

To appreciate the advantage of ROC analysis, consider 
the two ROC curves illustrated in Figure 6. The ROC is a 
plot of the family of hit and false alarm rates (i.e., correct 
and false ID rates) associated with each procedure, and 
values shown next to each data point indicate the diagnos-
ticity ratio (i.e., correct ID rate ∕ false ID rate) for that point. 
In this example, Procedure A is diagnostically superior to 
Procedure B because for any given false ID rate, Procedure 
A can achieve a higher correct ID rate. If only a single ROC 
point is computed for each procedure and those two points 
are then compared using the diagnosticity ratio (as was done 
in the vast majority of mock-crime lab studies comparing 
simultaneous and sequential lineups), the diagnostically 
inferior lineup procedure could be misconstrued as being 
the superior procedure (e.g., imagine computing only the 
rightmost ROC point for each procedure and comparing 
them using the diagnosticity ratio). The only way to deter-
mine the diagnostically superior procedure is to trace out the 
ROC (i.e., trace out the obtainable hit and false alarm rates) 
for each lineup procedure.
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The easiest and by far the most common way to 
construct an ROC in experiments with humans is to collect 
confidence ratings. The overall hit and false alarm rates (i.e., 
the values that are usually reported as the correct and false 
ID rates) are computed using all correct suspect IDs from 
target-present lineups and all incorrect suspect IDs from 
target-absent lineups. In the example given above, there 
were 52 correct suspect IDs from 100 target-present lineups 
(made with varying degrees of confidence) and 24 incorrect 
suspect IDs from 100 target-absent lineups (again made with 
varying degrees of confidence). This yielded overall hit and 
false alarm rates of .52 and .24 respectively. ROC analysis 
essentially gives you permission to disregard suspect IDs 
that are made with low confidence (as the legal system might 

do). If you disregard low-confidence suspect IDs by treat-
ing them as effective non-IDs, then (a) you have adopted a 
more conservative standard for counting suspect IDs, and 
(b) you will have fewer correct and false IDs than you did 
before, so the correct and false ID rates will now both be 
lower. Imagine that two correct suspect IDs were made with 
low confidence and 10 incorrect suspect IDs were made with 
low confidence. Excluding these IDs leaves 52 – 2 = 50 
correct suspect IDs from 100 target-present lineups and 
24 – 10 = 14 incorrect suspect IDs from 100 target-absent 
lineups. Thus, the new hit and false alarm rates are .50 and 
.14, respectively. Now there are two points to plot on the 
ROC. When all IDs are counted regardless of confidence, 
the resulting correct and false ID rates correspond to the 
rightmost ROC point. Disregarding low-confidence IDs 
yields the next ROC point down and to the left.

Once you realize that you are not obligated to count IDs 
made with low confidence, it immediately follows that you 
are also not obligated to count IDs made with medium confi-
dence. Excluding IDs made with low or medium confidence 
by treating them as effective non-IDs yields yet another pair 
of correct and false ID rates (i.e., another ROC point, again 
down and to the left). Critically, as noted above, the diagnos-
ticity ratio increases monotonically as an ever-higher confi-
dence standard is applied. Although it is easy to imagine 
that the diagnosticity ratio might not increase as responding 
becomes more conservative, it invariably occurs and is natu-
rally predicted by signal-detection theory (see Appendix of 
Wixted & Mickes, 2014).

The point is that one must perform ROC analysis, not 
compute the diagnosticity ratio from a singular pair of hit 
and false alarm rates, to identify the diagnostically supe-
rior lineup procedure. The first ROC study of eyewitness 
identification procedures only appeared in late 2012 and it 
is reproduced here in Figure 7 (Mickes, Flowe, & Wixted, 
2012). The results came as a surprise because they unexpect-
edly revealed a simultaneous superiority effect. Before that 
study was performed, there had not been a single sugges-
tion that simultaneous lineups might be superior to sequen-
tial lineups. Instead, over the years, the debate had been 
whether there was a sequential superiority effect (because 
it tended to yield a higher diagnosticity ratio) or whether the 
two procedures were diagnostically equivalent. Now, multi-
ple ROC studies of simultaneous vs. sequential lineups have 
been published, and they all show evidence of a simultane-
ous superiority effect, though the effect is not always signif-
icant (Carlson & Carlson, 2014; Dobolyi & Dodson, 2013; 
Gronlund et al., 2012; Mickes et al., 2012). To date, no ROC 
study has shown the slightest hint of a sequential superior-
ity effect.
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Figure 6. Illustration of receiver operating characteristic plots for two 
hypothetical lineup procedures. Each lineup procedure is constrained to 
yield correct and false ID rates that fall on a curve as responding changes 
from being very conservative (lower leftmost point of each procedure) 
to being very liberal (upper rightmost point for each procedure). 
Values shown next to each data point indicate the diagnosticity ratio 
(correct ID rate ∕ false ID rate) for that point. In this example, Procedure 
A is diagnostically superior to Procedure B because for any given false 
ID rate, Procedure A can achieve a higher correct ID rate. If only a 
single ROC point is computed for each procedure and the procedures 
are then compared using the diagnosticity ratio (as was done in the 
vast majority of mock-crime lab studies comparing simultaneous and 
sequential lineups), the diagnostically inferior lineup procedure could be 
misconstrued as being the superior procedure (e.g., imagine computing 
only the rightmost ROC point for each procedure and comparing them 
using the diagnosticity ratio).
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Simultaneous vs. Sequential Lineups in the Real World
Do the ROC results from lab studies generalize to the 

real world? In two recent police department field studies 
comparing the two lineup formats (one in Austin, Texas, 
and the other in Houston, Texas), evidence of a simultane-
ous superiority effect was observed. Using expert ratings of 
incriminating evidence against identified suspects, Amen-
dola and Wixted (2015) found that, in Austin, the results 
significantly favored the simultaneous procedure. In other 
words, the results suggested that guilty suspects were more 
likely to be identified—and innocent suspects were less 
likely to be misidentified—using simultaneous lineups 
compared to sequential lineups. Similarly, in the Houston 
field study, Wixted, Mickes, Clark, Dunn, & Wells (in press) 
again found evidence of a simultaneous superiority effect 
based on police officer ratings of incriminating evidence 
against identified suspects. The effect was not always signif-
icant, depending on how the data were analyzed, but the 
trend was always in a direction that favored the simultane-
ous procedure. In addition, a separate signal-detection-based 
analysis of eyewitness confidence ratings in the Houston 
field study also favored the simultaneous procedure.

ROC analysis cannot be performed on data collected 
from real eyewitnesses because one does not know whether 
suspect IDs are correct or incorrect (information that is 

needed to compute the correct and false ID rates that make 
up the ROC). Instead, as noted above, the lineup perfor-
mance measure used in these two police department field 
studies was “independent evidence of guilt,” which is a 
proxy for odds of guilt. This measure is conceptually iden-
tical to the diagnosticity ratio that has been used in lab stud-
ies for years. That is, the diagnosticity ratio—correct ID 
rate ∕ false ID rate—is also an odds-of-guilt measure. That 
fact raises an obvious question: Why is it acceptable to use 
an odds-of-guilt measure for real eyewitnesses when it is not 
acceptable to use it for lab studies?

An odds-of-guilt measure is problematic only when 
responding is more conservative for one lineup procedure 
than the other. In lab studies, sequential lineups often induce 
more conservative responding. Under those conditions, an 
odds-of-guilt measure like the diagnosticity ratio would be 
expected to favor the more conservative procedure whether 
or not it is the diagnostically superior procedure because that 
measure increases as responding becomes more conserva-
tive. However, in both police department field studies (the 
one conducted in Austin and the one conducted in Houston), 
responding happened to be similarly biased for simultane-
ous and sequential lineups in the sense that IDs were made 
with approximately equal frequency for both lineup types. 
Under those conditions only, an odds-of-guilt measure 
correctly identifies the diagnostically superior lineup proce-
dure. In both police department field studies, the simultane-
ous procedure was favored according to the odds-of-guilt 
measure, just as would be predicted from recent lab-based 
ROC analyses.

Pushback from Proponents of the Sequential Procedure
Perhaps understandably, longstanding advocates of the 

sequential procedure have a different take on the data. For 
example, Wells, Steblay, & Dysart (2015a) argued that the 
results of the Austin Police Department field study, when 
combined with police department field data from three other 
study sites (San Diego, California; Tucson, Arizona; and 
Charlotte-Mecklenburg, North Carolina), actually favored 
the sequential procedure. Their argument was based not 
on independent incriminating evidence against identified 
suspects (as our analyses were) but was instead based on the 
fact that the filler ID rate for sequential lineups was lower 
than the filler ID rate for simultaneous lineups. Because fill-
ers are known to be innocent, the interpretation was that 
sequential lineups better protect innocent suspects from 
being misidentified.

In addition, Wells, Steblay, and Dysart (2015b) and 
Steblay, Dysart, and Wells (2015) argued that the sample of 
identified suspects studied by Amendola and Wixted (2015) 
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Figure 7. Confidence-based receiver operating characteristics (ROCs) 
from an experiment in which memory for a perpetrator in a simulated 
crime was tested using either a simultaneous lineup procedure (filled 
symbols) or a sequential lineup procedure (open symbols). The 
participants were undergraduates tested in a laboratory, and fair lineups 
were used. The solid gray line represents chance performance.
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was, for unidentified reasons, biased against the sequen-
tial procedure. The basis of their concern about a possi-
bly biased sample was that the ultimate case outcomes (i.e., 
proportion of suspects ultimately found guilty by jury or 
plea bargain) differed noticeably for the suspects identified 
in Austin (where our expert ratings study was conducted) 
compared to suspects identified in all four study sites aggre-
gated together (Austin, Charlotte-Mecklenburg, San Diego, 
and Tucson). In Austin, the results showed that a higher 
proportion of suspects identified from simultaneous lineups 
was found guilty compared to sequential lineups; in the full 
data set, by contrast, the case outcomes for simultaneous and 
sequential lineups were more evenly balanced. Their inter-
pretation of this pattern of data was that, for some reason, 
the Austin sample included an unusually high number of 
guilty suspects in the simultaneous condition. If so, it would 
not be surprising that independent expert ratings of guilt 
would also be higher for the simultaneous sample than for 
the sequential sample.

A subsequent analysis by Amendola and Wixted (2015) 
showed that the case made by Wells and colleagues, which is 
dependent on aggregating data across study sites, overlooks 
statistically significant evidence of site variance that effec-
tively disallows aggregating data across sites. For exam-
ple, based on an analysis of data aggregated across study 
sites, Wells et al. (2015a) argued that the lower filler ID rate 
observed for sequential lineups suggests a sequential lineup 
advantage. However, by examining the data separately by 
study site, Amendola and Wixted (2015) showed that the 
observed filler ID rate difference (like the higher diagnos-
ticity ratio often associated with sequential lineups in lab 
studies) is entirely attributable to a conservative response 
bias that was evident in the three non-Austin study sites—
a response bias that was absent in the Austin study site. As 
with lab studies, the conservative response bias sometimes 
induced by sequential lineups does not indicate a sequen-
tial superiority effect. Moreover, this previously unap-
preciated evidence of site variance also accounts for why 
Wells et al. (2015b) and Steblay et al. (2015) came to believe 
that the Amendola and Wixted (2015) sample was biased 
against the sequential procedure. As noted above, the basis 
of their concern about a possibly biased sample was that 
the case outcomes (i.e., proportion ultimately found guilty) 
for the suspects identified from lineups in Austin differed 
noticeably from the case outcomes for the suspects iden-
tified from lineups aggregated across all four study sites. 
However, given evidence of site variance, there is no reason 
why the Austin sample (where no conservative response bias 
was observed for sequential lineups relative to simultane-
ous lineups) should be representative of the data collapsed 

across study sites. Moreover, because response bias was 
similar for simultaneous and sequential lineups in the Austin 
sample only, any comparison of lineup performance based 
on incriminating evidence of guilt has to be limited to data 
from that site alone. For the Austin data, filler ID rates show 
no hint of a sequential superiority effect, and the Amendola 
and Wixted (2015) expert ratings data show clear evidence 
of a simultaneous superiority effect.

Theoretical Basis of the Simultaneous Superiority Effect. 
In retrospect, the diagnostic advantage of simultaneous 

lineups should not have come as a surprise. The reason is 
that no theoretical explanation as to why sequential lineups 
might yield higher discriminability has ever been advanced, 
and the longstanding absence of a theoretical explanation to 
that effect probably should have been a cause for concern. 
To be sure, there is a prominent theory about why different 
patterns of responding are maintained by simultaneous and 
sequential lineups, but it is not a theory of discriminability. 
This well-known theory draws a distinction between abso-
lute and relative decision strategies (Lindsay & Wells, 1985; 
Wells, 1984). According to this account, simultaneous line-
ups encourage a witness to identify the lineup member who 
most resembles the eyewitness’s memory of the perpetrator 
(a relative decision strategy). By contrast, sequential line-
ups encourage a witness to choose a lineup member only 
if the familiarity signal exceeds an absolute decision crite-
rion. Wixted and Mickes (2014) argued that this is a theory 
of response bias (i.e., simultaneous lineups engender a more 
liberal response bias than sequential lineups), not a theory of 
discriminability. In agreement with this view, Wells (1984) 
wrote, “It is possible to construe of the relative judgments 
process as one that yields a response bias, specifically a bias 
to choose someone from the lineup” (p. 94).

But what about discriminability—that is, the ability to 
tell the difference between innocent and guilty suspects? 
Until recently, no theory of discriminability for the lineup 
task had ever been proposed. A case could be made that a 
theory of response bias in terms of absolute and relative 
responding is much less important than a theory of discrim-
inability because manipulating response bias is easy to do 
using either kind of lineup procedure (i.e., one need switch 
lineup procedures to influence response bias). By contrast, 
in the absence of theoretical guidance, improving discrim-
inability is hard. Fortunately, simple theoretical principles 
from the perceptual learning literature very naturally explain 
why simultaneous lineups should be diagnostically superior 
to sequential lineups in terms of discriminability. The basic 
idea, as argued by Wixted and Mickes (2014), is that simul-
taneous lineups immediately teach the witness that certain 
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facial features are nondiagnostic and therefore should not be 
relied upon to try to decide whether or not the guilty suspect 
is in the lineup. The nondiagnostic features are the features 
that are shared by every member of the lineup (the fillers and 
suspect alike, and whether the suspect is innocent or guilty). 
These are the features that were used to select individuals 
for inclusion in the lineup—that is, features that match the 
physical description of the perpetrator. Because everyone in 
the lineup shares those features, relying on them to deter-
mine whether or not the guilty suspect is in the lineup can 
only harm discriminative performance. Simultaneous line-
ups immediately teach the witness what the nondiagnostic 
features are (namely, the features that are obviously shared 
by all six members of the lineup, such as the fact that they 
are all young white males), thereby allowing those features 
to be given less weight and, as a result, enhancing discrimi-
native performance.

Again not surprisingly, longstanding advocates of the 
sequential procedure have taken issue not just with our inter-
pretation of police department field study data but also with 
recent lab-based ROC analyses that confirmed the simulta-
neous superiority effect in terms of discriminability (e.g., 
Wells, Smalarz, & Smith, in press; Wells, Smith, & Smalarz, 
in press). In fact, they are taking the position that ROC anal-
ysis is not informative when it comes to comparing lineup 
procedures, declaring not only that I and other researchers 
are wrong about that but that so is the National Academy of 
Sciences committee that recently weighed in on the issue 
(National Research Council, 2014). In their view, the work 
that my colleagues and I performed on this issue misled the 
esteemed National Academy committee, thereby explain-
ing why the committee made the mistake of endorsing ROC 
analysis over the diagnosticity ratio. As they put it: “Yes, the 
National Research Council (NRC) report got it wrong by 
interpreting ROC analyses on lineups as measures of under-
lying discriminability. But that is how the NRC eyewitness 
committee read and interpreted Wixted and Mickes’ work” 
(Wells, Smith, & Smalarz, in press). As part of an invited 
debate about these issues, Mickes and I have elaborated on 
the case in favor of ROC analysis (Wixted & Mickes, in 
press a; Wixted & Mickes, in press b). Lampinen (in press) 
recently joined the debate by arguing against the utility of 
ROC analysis.

It seems clear that the issue will continue to be debated 
in the years to come, but it is hard for me to imagine that 
the ultimate judgment will be that ROC analysis has noth-
ing useful to offer. The mere fact that, in the past, research-
ers based their argument in favor of sequential lineups on 
the ratio of the correct ID rate to the false ID rate means 
that they already computed one point on the ROC. If there 

is a reasonable case to be made as to why it is mandatory 
to compute one point on the ROC to measure lineup perfor-
mance yet is utterly inappropriate to examine any of the 
other points on the ROC, then that case should be made. 
Thus far, the anti-ROC arguments have avoided this basic 
consideration. Anyone interested in this topic would do well 
to read the various articles in this ongoing debate and then 
make their own judgment as to who has the stronger argu-
ment. The larger community of scientists will, of course, be 
the ultimate judge. To some extent, that is already happening 
(National Research Council, 2014; Rotello, Heit, & Dubé, 
2015), and this is how it should be. For too long, some of 
the most influential applied research has been conducted by 
psychologists who are (in my view) too far removed from 
basic psychological science. Indeed, lineup format is not 
the only consequential issue that applied psychologists got 
wrong over the years. The other important issue where key 
mistakes have been made has to do with the very notion of 
eyewitness unreliability itself.

Eyewitnesses are nowhere near as unreliable as they have 
long been thought to be. As described in more detail below, 
eyewitness ID researchers have corrected this mistake with 
a compelling series of empirical calibration studies (most of 
which come from Neil Brewer and his colleagues), but the 
information seems almost exclusively confined to that small 
field. In my experience, the larger community of experimen-
tal psychologists typically reacts with shock in response to 
the claim that, under typical laboratory conditions (e.g., fair 
lineups, no administrator influence, etc.), eyewitness confi-
dence is a strong indicator of reliability. Moreover, the earlier 
work suggesting that eyewitness identification is inherently 
unreliable even under pristine laboratory conditions has had 
a profound influence on the U.S. legal system, and that influ-
ence is growing, not shrinking. Courts across the land are 
increasingly inclined to disregard expressions of confidence 
made by eyewitnesses. A case can be made—and we do make 
the case—that this practice unnecessarily places innocent 
suspects at risk (exactly the opposite of what was intended).

Confidence and Accuracy
To many, the suggestion that eyewitnesses are not inher-

ently unreliable may sound as implausible as the idea that 
ESP is real. However, my colleagues and I recently made the 
case that the blanket indictment of the reliability of eyewit-
ness identification from a lineup is incorrect and serves only 
to place innocent suspects at greater risk of being wrong-
fully convicted (Wixted, Mickes, Clark, Gronlund, & Roed-
iger, 2015). To appreciate why, it is essential to first draw a 
distinction between the initial eyewitness ID from a lineup 
and the much later ID that occurs at trial. There is nearly 
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unanimous agreement that initial confidence can become 
artificially inflated for a variety of reasons such that by the 
time a trial occurs, an original ID made with low confidence 
(for example) can morph into an ID made with high confi-
dence (Wells & Bradfield, 1998, 1999). The DNA exonera-
tion cases that were associated with eyewitness misiden-
tification involved high-confidence IDs of an innocent 
defendant made in front of a jury during a trial (and the jury 
interpreted the ID as compelling evidence of guilt). Errors 
like these make it clear that eyewitness identification can be 
unreliable under some conditions, such as at trial. Indeed, 
through decades of work, Loftus and her colleagues have 
established beyond any reasonable doubt that memory is 
malleable (Loftus, 2005; Loftus & Pickrell, 1995; Loftus & 
Palmer, 1974; Loftus, Miller, & Burns, 1978).

But is eyewitness memory always unreliable? The idea 
that eyewitness memory is generally unreliable (not just at 
trial) was set in stone by the fact that mock-crime studies 
once seemed to convincingly show that, even at the time of 
the initial identification from a lineup (long before a trial 
occurs and before memory contamination has much of an 
opportunity to take place), eyewitnesses who make a high-
confidence identification are only somewhat more accurate 
than the presumably error-prone eyewitnesses who make a 
low-confidence identification (Devenport, Penrod, & Cutler, 
1997). In other words, this research seemed to indicate that 
the relationship between confidence and accuracy is weak 
across the board.

The relationship between confidence and accuracy 
was originally measured by computing the standard Pear-
son r correlation coefficient between the accuracy of a 
response (e.g., coded as 0 or 1) and the corresponding confi-
dence rating (e.g., measured using a five-point scale from 
“just guessing” to “very sure that is the person”). A correct 
response consists of (a) a suspect ID from a target-present 
lineup or (b) the rejection of a target-absent lineup, whereas 
an incorrect response consists of (a) a suspect ID from a 
target-absent lineup, (b) a filler ID from either type of lineup, 
or (c) the rejection of a target-present lineup. Because accu-
racy is coded as a dichotomous variable, the Pearson r in 
this case is known as a point-biserial correlation coefficient.

In an early review of the literature, Wells and Murray 
(1984) reported that the average point-biserial correlation 
between confidence and accuracy in studies of eyewit-
ness identification was only .07 (declaring on that basis that 
confidence was “functionally useless” in forensic settings), 
but in a later meta-analysis, Sporer, Penrod, Read, and 
Cutler (1995) found that the relationship is noticeably stron-
ger—about .41—when the analysis was limited to only those 
who make an ID from a lineup (i.e., when the analysis was 

limited to “choosers” who ID a suspect or a filler). Limit-
ing the analysis to choosers is reasonable because only 
witnesses who choose someone would end up testifying 
in court against the suspect they identified. Still, even this 
higher correlation is generally viewed in a negative light. For 
example, Wilson, Hugenberg, and Bernstein (2013) recently 
stated that “. . . one surprising lesson that psychologists have 
learned about memory is that the confidence of an eyewit-
ness is only weakly related to their recognition accuracy (see 
Sporer et al., 1995, for a review).” Thus, many still view the 
relationship between eyewitness confidence and accuracy 
as being of limited utility. In a well-known survey that is 
often cited in U.S. courts, Kassin, Tubb, Hosch, and Memon 
(2001) found that 90% of the respondents agreed with the 
following statement: “An eyewitness’s confidence is not a 
good predictor of his or her identification accuracy.” In addi-
tion, a recent amicus brief filed by the Innocence Project in 
Michigan states that “A witness’ confidence bears, at best, a 
weak relationship to accuracy.”

The problem with this conclusion is that it is based on a 
statistic that does not adequately characterize the relation-
ship between confidence and accuracy (in much the same 
way that the diagnosticity ratio does not adequately char-
acterize the diagnostic performance of a lineup procedure). 
Juslin, Olsson, and Winman (1996) definitively showed that, 
counterintuitively, a low correlation coefficient does not 
necessarily imply a weak relationship between confidence 
and accuracy. They argued that a better way to examine the 
relationship—the way that is more compatible with predic-
tions made by signal-detection theory—would be to simply 
plot accuracy as a function of confidence.

Signal-Detection Predictions Concerning the  
Confidence–Accuracy Relationship

A key assumption of signal-detection theory is that 
a decision criterion is placed somewhere on the memory 
strength axis, such that an ID is made if the memory 
strength of a face (target or lure) exceeds it. The correct ID 
rate is represented by the proportion of the target distribu-
tion that falls to the right of the decision criterion, and the 
false ID rate is represented by the proportion of the lure 
distribution that falls to the right of the decision criterion. 
These theoretical considerations apply directly to eyewit-
ness decisions made using a showup (i.e., where a single 
suspect is presented to the eyewitness), but they also apply 
to decisions made from a lineup once an appropriate deci-
sion rule is specified (Clark, Erickson & Breneman, 2011; 
Fife, Perry, & Gronlund, 2014; Wixted & Mickes, 2014). 
One simple lineup decision rule holds that eyewitnesses first 
determine the lineup member who most closely resembles 
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their memory for the perpetrator and then identify that 
lineup member if subjective memory strength for that indi-
vidual exceeds a decision criterion (see Clark et al. 2011 for 
a discussion of a variety of possible lineup decision rules).

Figure 8 shows how SDT conceptualizes confidence 
ratings associated with IDs that are made using a three-
point scale (1 = low confidence, 2 = medium confidence, 
and 3 = high confidence). Theoretically, the decision to 
identify a target or a lure with low confidence is made when 
memory strength is high enough to support a confidence 
rating of 1 but is not high enough to support a confidence 
rating of 2 (i.e., when memory strength falls between the 
first and second decision criteria). Similarly, a decision to 
identify a target or a lure with the next highest level of confi-
dence is made when memory strength is sufficient to support 
a confidence rating of at least 2 (but not 3). A high-confi-
dence rating of 3 is made when memory strength is strong 
enough to exceed the rightmost criterion.

In this illustrative example, 37% of targets would be 
associated with memory strengths that exceed the highest 
confidence criterion (Figure 9, top left panel). By contrast, 
only about 2% of lures would be associated with memory 
strengths that exceed the highest confidence criterion 
(Figure 9, top right panel). If innocent and guilty suspects 
appeared equally often (i.e., if we assume equal base rates), 
this would mean that 37 out of 39 high-confidence IDs would 
be correct. Thus, the proportion correct for high-confidence 
IDs would be 37 ∕ (37 + 2) = .95.

Next, consider IDs made with medium confidence (a 
rating of 2 on the 1-to-3 confidence scale). Only 13% of 
targets in this example would be associated with memory 
strengths that fall above the criterion required to receive 
a confidence rating of 2 but below the criterion required 
to receive a high-confidence rating of 3 (Figure 9, middle 
left panel), whereas about 4% of lures would be associ-
ated with memory strengths that fall in that same range 
(Figure 9, middle right panel). Thus, the proportion correct 
for medium-confidence decisions is 13 ∕ (13 + 4) = .76.

Finally, 13% of targets in this example would be asso-
ciated with memory strengths that fall above the criterion 
required to receive a low-confidence rating of 1 but below 
the criterion required to receive a medium-confidence rating 
of 2 (Figure 9, bottom left panel), whereas about 9% of lures 
would be associated with memory strengths that fall in that 
same range (Figure 9, bottom right panel). Thus, the propor-
tion correct for low-confidence decisions drops even further 
to 13 ∕ (13 + 9) = .59.

Figure 10 is a graph of proportion correct versus confi-
dence for the hypothetical example illustrated above. Obvi-
ously, SDT predicts a strong relationship between confidence 

and accuracy. The details of what the theory predicts will 
vary from case to case, but so long as the target distribution 
is shifted to the right of the lure distribution (i.e., so long as 
a diagnostic memory signal exists) and so long as the confi-
dence criteria are monotonically arranged on the memory 
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Figure 8. A depiction of the standard Unequal-Variance Signal-Detection 
(UVSD) model for three different levels of confidence, low (1), medium 
(2), and high (3). An unequal-variance model is depicted here because 
the results of list-memory studies are usually better modeled by assuming 
unequal rather than equal variance. Whether this is also true of lineup 
studies is not yet known.
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Figure 9. Signal-detection-based interpretation of correct ID rates 
(left panels) and false ID rates (right panels) for high-confidence (top), 
medium-confidence (middle), and low-confidence (bottom) IDs.
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strength axis, the theory predicts that confidence and accu-
racy will be positively related, and this is true even if the 
correlation coefficient, as typically computed, is low.

Empirical Plots of the Confidence–Accuracy Relationship
A considerable body of research conducted in the time 

since the Sporer et al. (1995) review appeared has used a 
calibration approach (in which accuracy is plotted as a func-
tion of confidence measured using a 100-point scale), which 
is closer to how a signal-detection approach suggests that the 
data should be plotted (Figure 10). This body of research has 
almost always reported visually obvious evidence of a strong 
relationship between confidence and accuracy (Brewer & 
Wells, 2006; Brewer, Keast, & Rishworth, 2002; Palmer, 
Brewer, Weber, & Nagesh, 2013; Sauer, Brewer, Zweck, & 
Weber, 2010; Sauerland & Sporer, 2009; Brewer & Palmer, 
2010; Weber & Brewer, 2004, 2006). This work explains 
why many eyewitness ID researchers no longer believe that 
confidence is, at best, a weak indicator of accuracy. Still, 
many do, and their views increasingly win the day in the 
U.S. legal system.

The dependent variable in a calibration analysis is an 
accuracy score of the general form correct IDs ∕ (correct 
IDs + incorrect IDs). If there were no incorrect IDs, then 
this measure would equal 1.0. If there were as many incor-
rect IDs as correct IDs, then it would equal .50. However, 
there is more than one way to compute a calibration accuracy 
score, depending on whether or not filler IDs are counted as 
incorrect IDs. Should filler IDs and innocent suspect IDs 

alike be counted as errors, or should only innocent suspect 
IDs be counted as errors?

Wixted et al. (2015) argued that for the information to be 
maximally informative to the legal system, filler IDs should 
not be included in the calculations (just as they are often 
not included when computing correct and false ID rates for 
diagnosticity ratio or ROC analyses). The eyewitness ID 
cases that end up before judges and juries are limited to 
identified suspects, and the question asked by the court is 
this: what does confidence tell us about the reliability of the 
suspect ID? Note that this is a question about the cases that 
go forward to prosecution using eyewitness identification as 
direct evidence of the suspect’s guilt, not about the full set of 
cases involving eyewitness who choose fillers or reject line-
ups. The accuracy of witnesses who identify suspects are of 
special interest, so the accuracy score of interest is guilty 
suspect IDs ∕ (guilty suspect IDs + innocent suspect IDs).

Although calibration studies typically count filler IDs as 
errors in their accuracy score (thereby lowering the accuracy 
score from what it would otherwise be), it is worth examin-
ing data from a representative study to see what suspect ID 
accuracy typically looks like as a function of confidence. 
A representative study by Dobolyi and Dodson (2013) can 
be used for this purpose. This was a face memory study 
in which the participating eyewitnesses were later tested 
using a six-person simultaneous or sequential photo lineup, 
and confidence ratings were taken using a 0-to-100 scale. 
The relationship between suspect ID accuracy and confi-
dence—estimated from their data and collapsed across 
conditions—is shown in Figure 11. The results indicate that 
even low-confidence suspect IDs are fairly accurate (about 
70% correct), though the 30% error rate would obviously be 
too high to justify a conviction based on a low-confidence 
ID alone. Remarkably, high-confidence suspect ID accuracy 
is almost perfect. These results are not atypical, though it is 
not uncommon to find high-confidence suspect ID accuracy 
to be closer to .95 than 1.0 (Wixted et al., 2015).

What data like these suggest is that the impression 
created by an earlier era of research that relied on the point-
biserial correlation coefficient was misleading (suggesting, 
as it did, a weak confidence–accuracy relationship) and that 
the actual confidence–accuracy relationship is much more in 
line with what one would expect using signal detection as a 
guide. Unfortunately, the legal system increasingly accepts 
the idea that there is a weak correlation between confi-
dence and accuracy, and jurors are increasingly encouraged 
to ignore expressions of eyewitness confidence (including 
initial confidence). If the relationship between eyewitness 
confidence and accuracy is initially strong, then an argu-
ment could be made that encouraging juries to disregard 
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confidence places innocent suspects at increased risk of 
wrongful conviction. In his 2011 book Convicting the Inno-
cent: Where Criminal Prosecutions Go Wrong, Brandon 
Garrett (2011a) analyzed trial materials for 161 DNA exoner-
ees who had been misidentified by one or more eyewitnesses 
in a court of law. A key finding was that “. . . in 57% of these 
trial transcripts (92 of 161 cases), the witnesses reported that 
they had not been certain at the time of their earlier iden-
tifications” (p. 49, emphasis in original). Information about 
the initial confidence for the remaining 43% of cases was 
not available.

Figure 11 suggests that an expression of low confidence 
is how eyewitnesses communicate the fact that the ID they 
are making carries a high risk of being wrong. In fact, the 
DNA exoneration cases suggest that this is as true of the real 
world as it is of the laboratory. An initial ID made with low 
confidence is a red flag that the risk of eyewitness misiden-
tification is high. Therefore, teaching jurors to ignore confi-
dence is teaching them to ignore a critical clue that the iden-
tified suspect may be innocent. No fewer than 57% of DNA 
exonerees were convicted based on low-confidence initial 
IDs that later morphed into high-confidence IDs due to the 
malleability of memory. If it were understood that initial 
confidence (and only initial confidence) is clearly diagnostic 

of guilt, then many of these individuals might never have 
been convicted in the first place. Note that this is even true of 
what is perhaps the most famous case of eyewitness misiden-
tification, the one that is usually used to illustrate how unre-
liable eyewitness identification can be. During a trial that 
was held in 1985, Jennifer Thompson confidently identified 
Ronald Cotton as the man who had raped her. Cotton was 
convicted largely on the basis of her testimony, but he was 
later exonerated by DNA evidence after spending more than 
10 years in prison. Long before the trial, however, Thomp-
son’s initial identification of Cotton from a photo lineup was 
characterized by a prolonged period of hesitation and indeci-
sion that lasted for nearly five minutes and that ended with a 
low-confidence verbal identification consisting of the words 
“I think this is the guy” (p. 33, Thompson-Cannino, Cotton, 
& Torneo, 2009; Garrett, 2011b). However, after confirma-
tory feedback from the police, Thompson quickly became 
confident that Cotton was the rapist. Her initial lack of confi-
dence spoke volumes, but no one paid attention to it.

The same pattern continues to be seen in DNA exoner-
ation cases. A new DNA exoneration case was in the news 
as this paper was being prepared for submission. The article 
says: “DNA testing methods were not as sensitive at the time 
of the trial and the convictions hinged on positive identifica-
tions by the three victims.” On the surface, this appears to be 
yet another testimony to the already well-established unreli-
ability of eyewitness memory. But now consider something 
else mentioned in the article: “The judge noted that their 
initial identifications, however, were tentative and inconsis-
tent in describing their assailant.” Once again, the initial red 
flag that the IDs were made with low confidence was disre-
garded. That mistake will likely be repeated with increasing 
frequency now that courts across the land are taking confi-
dence off the table as a factor juries should use to assess 
the reliability of an eyewitness ID (e.g., New Jersey Courts, 
2012; New Jersey Model Criminal Jury Charges, 2012).

Discussion
The most appropriate way to analyze recognition 

memory data turns out not to be intuitively obvious. That 
fact came to be appreciated by experimental psycholo-
gists working on problems that have no apparent applied 
relevance (e.g., list-memory studies with humans, sample/
no-sample tasks with pigeons, etc.). Researchers conducting 
curiosity-driven research on basic issues like these hit upon 
a critical distinction between response bias and discrim-
inability, and they developed theories to help conceptualize 
that distinction (e.g., signal-detection theory) and methods 
to help study it (e.g., ROC analysis). Applied psychologists 
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Figure 11. Suspect ID accuracy, which is equal to correct 
suspect IDs ∙ (correct suspect IDs + incorrect suspect IDs), for a 
lineup study reported by Dobolyi and Dodson (2013). This study used 
fair lineups with no designated innocent suspect, so incorrect suspect 
IDs were estimated by dividing the number of filler IDs from target-
absent lineups by the lineup size of 6.
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instead focused their attention on issues of obvious social 
importance, such as the wrongful conviction of innocent 
defendants due to eyewitness misidentification, but they did 
so with limited theoretical guidance. The intuition-based 
approaches they used to investigate eyewitness misiden-
tification led to the conclusion that sequential lineups are 
diagnostically superior to simultaneous lineups and to the 
further conclusion that eyewitness confidence is, at best, 
weakly related to accuracy. Both conclusions have had a 
profound impact on the legal system, but both are called 
into question when the data are conceptualized in terms of 
signal-detection theory and analyzed using ROC analysis 
and related methods.

Research on simultaneous and sequential lineups 
(apparently favoring the sequential procedure) and on the 
confidence–accuracy relationship in eyewitness identifica-
tion (apparently indicating that the relationship is inherently 
weak) began more than 30 years ago and only recently came 
into contact with signal-detection-based concepts. When 
that contact was finally made, the conclusions changed 
rather dramatically. In fact, conclusions about the confi-
dence–accuracy relationship were already changing in the 
positive direction due largely to the work of Neil Brewer 
(e.g., Brewer & Palmer, 2010) even though, thus far, that 
work has had limited impact on the legal system in the 
United States.

How could it happen that basic and applied psycholo-
gists became so insulated from each other? The answer is 
not clear, but what is clear is that the separation between 
the two disciplines is an unhealthy state of affairs. My own 
interpretation is that applied psychologists do not place much 
value on basic, curiosity-driven research, so they tend to 
largely ignore basic science. Indeed, the recent push toward 
“translational” research may be a larger manifestation of 
the same issue (namely, devaluing basic research in favor 
of direct application). Recent developments in the domain 
of eyewitness identification should perhaps be regarded as 
a case study of what can go wrong when that approach is 
taken too far. The push toward translational research is an 
attempt to favor studies with applied relevance over those 
without obvious applied relevance. The problem with that 
approach is that it is nearly impossible to tell in advance how 
important the results of a particular basic science experi-
ment will turn out to be. In a very real way, trying to under-
stand the asymmetrical pattern that pigeons exhibit on a 
sample/no-sample task (Figure 1) is what led me to real-
ize that the effectiveness of different lineup procedures and 
the information value of eyewitness confidence were being 
investigated in ways that could (and, as it turns out, actually 
did) lead to the wrong answer. That seems like an important 

lesson in an era that seems hyper-focused on translational 
research, usually at the expense of the basic research that 
does not have an obvious applied connection. 
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