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The mathematical theory of linear systems, which has been used successfully to describe behavior
maintained by variable-interval schedules, is extended to describe behavior maintained by variable-
ratio schedules. The result of the analysis is a pair of equations, one of which expresses response rate
on a variable-ratio schedule as a function of the mean ratio requirement (ni) that the schedule arranges.
The other equation expresses response rate on a variable-ratio schedule as a function of reinforcement
rate. Both equations accurately describe existing data from variable-ratio schedules. The theory
accounts for two additional characteristics of behavior maintained by variable-ratio schedules; namely,
the appearance of strained, two-valued (i.e., zero or very rapid) responding at large ns, and the abrupt
cessation of responding at a boundary ni. The theory also accounts for differences between behavior
on variable-interval and variable-ratio schedules, including (a) the occurrence of strained responding
on variable-ratio but not on variable-interval schedules, (b) the abrupt cessation of responding on
variable-ratio but not on variable-interval schedules even at extreme parameter values, and (c) the
occurrence of higher response rates on variable-ratio than on variable-interval schedules. Furthermore,
given data from a series of variable-interval schedules and from a series of concurrent variable-ratio
variable-interval schedules, the theory permits quantitative prediction of many properties of behavior
on single-alternative variable-ratio schedules. The linear system theory's combined account of behavior
on variable-interval and variable-ratio schedules is superior to existing versions of six other mathe-
matical theories of variable-interval and variable-ratio responding.
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McDowell and Kessel (1979) used the
mathematical theory of linear systems (Asel-
tine, 1958) to describe behavior maintained by
variable-interval (VI) schedules of reinforce-
ment. The linear system theory is a set of math-
ematical techniques that can be used to cal-
culate the response of a system to a known
input, provided the system can be described at
least in principle by a linear differential equa-
tion. The first step in applying the theory is
to write the reinforcement input delivered to
the organism and the response output pro-
duced by the organism in explicit mathemat-
ical forms. McDowell and Kessel (1979) wrote
the reinforcement input for the VI case as a
train of rectangular pulses spaced irregularly
in time. Figure 1 is a plot of a section of the
function, designated R(t), or reinforcement as
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a function of time. Each rectangular pulse rep-
resents a single reinforcement, and is described
by an amplitude, AR, and a width, w. The
ordinate of R(t) is a valuelike dimension.
Reinforcers with higher values may be rep-
resented by pulses with higher amplitudes.
Figure 1 shows that R(t) = AR during each
reinforcement pulse and that R(t) = 0 at all
other times. The transitions between the two
values arejump discontinuities. McDowell and
Kessel wrote the response output on a VI
schedule in the same way. The output func-
tion, designated B(t), or behavior as a function
of time, consists of a train of rectangular re-
sponse pulses spaced irregularly in time. Each
response pulse is characterized by an ampli-
tude, AB, and a width, w*. The ordinate of
B(t) is a valuelike dimension such that re-
sponses of greater aversiveness may be rep-
resented by pulses with higher amplitudes. Like
R(t), B(t) is a two-valued function with dis-
continuous transitions between AB and zero.
Both R(t) and B(t) for the VI case have the
additional property that the mean time be-
tween reinforcement or response pulses is con-
stant when large numbers of pulses are con-
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Fig. 1. A train of reinforcement pulses. R(t) is a valuelike dimension. Pulses start at irregularly spaced times, ti,

t2, t3, tn-1, and tn where the index, n = {1, 2, 3, . . .}. The amplitude of each pulse is AR. The duration of each pulse
is w. (From "Variable-interval rate equations and reinforcement and response distributions" by J. J McDowell, R.
Bass, and R. Kessel, 1983, Psychological Review, 90, 364-375. Copyright 1983 by the American Psychological Asso-
ciation, Inc. Reprinted by permission.)

sidered. This is a well-known characteristic of
VI reinforcement and responding (McDowell
& Sulzen, 1981).
The linear system analysis follows routinely

from the input and the output functions, R(t)
and B(t). The calculations are usually made
more tractable by applying a function trans-
form known as the Laplace transform. Func-
tion transforms are familiar to many research-
ers in the context of proportional ratio
matching. The power-function version of the
matching equation is usually subjected to log-
arithmic transformation (de Villiers, 1977),
which converts the equation into a simpler,
linear form. Logarithmic transforms simplify
functions by changing multiplication and di-
vision into addition and subtraction. Laplace
transforms simplify functions by changing in-
tegration and differentiation into multiplica-
tion and division.

Given that a system can be described by a
linear differential equation, it can be shown
that the ratio of the Laplace transform of the
output of the system to the Laplace transform
of the input to the system is constant (Aseltine,
1958). Thus, for R(t) and B(t),

Y[B(t)]= , (1)
Y[R(t)]

where 2Nf] represents the Laplace transform
of the indicated function. The scalar constant,
'y, represents properties of the organismic sys-
tem that are constant with respect to time.

McDowell and Kessel (1979) obtained a mean-
value rate equation (cf. McDowell, Bass, &
Kessel, 1983) for the VI case by calculating
the Laplace transforms of B(t) and R(t), sub-
stituting them into Equation 1, and solving for
the average rate of responding, Rout, The re-
sult was

{(ln[1 + -PB (Ri+w - 1)] - w* (2)

where Rin represents the average rate of re-
inforcement, PB represents the aversiveness of
the response, and PR represents the value of
the reinforcer. The quantity PB is defined as
the definite integral of B(t) during one re-
sponse pulse, and the quantity PR is defined
as the definite integral of R(t) during one re-
inforcement pulse (McDowell, 1987). These
integrals incorporate the amplitude parame-
ters AB and AR. According to Equation 2, the
rate of responding on VI schedules varies not
only with the rate of reinforcement, but also
with the value of the reinforcer and with the
aversiveness of the response.
The description of VI responding provided

by Equation 2 has proved to be excellent
(McDowell, 1980,1987; McDowell & Kessel,
1979) and superior to the descriptions pro-
vided by seven other mathematical accounts of
the VI case (Catania, 1973; Killeen, 1981,
1982; Rachlin, 1978; Staddon, 1977, 1979),
including Herrnstein's (1970) matching-based
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account (McDowell et al., 1983; McDowell &
Kessel, 1979; McDowell & Wood, 1984,1985).
Although several properties of Equation 2 re-
main to be tested (McDowell, 1987), the suc-
cess of the linear-system description of the VI
case indicates that applications of the theory
to other cases might also be successful. In the
present article we apply the linear system the-
ory to the case of behavior maintained by vari-
able-ratio (VR) schedules.

THE VI-PLUS-LINEAR-FEEDBACK
APPROACH TO THE VR CASE

McDowell (1979, 1980) pointed out that
the simplest mathematical approach to the VR
case was to treat it as VI responding, but with
the addition of a feedback loop. Indeed, the
functions R(t) and B(t) for the VI case also
describe the reinforcement input and response
output for the VR case. On both types of sched-
ule, reinforcements and responses are spaced
irregularly in time and the mean time between
reinforcement or response events is roughly
constant. Missing from the VI analysis, how-
ever, is the feedback loop that links reinforce-
ment rate to response rate on VR schedules.
Of course feedback also occurs on VI sched-
ules, but it is restricted to a small range of low
response rates and is minimal in comparison
to VR feedback, which operates at all response
rates (cf. McDowell, 1980).
The VR feedback loop is determined by the

average ratio requirement, fn, that the VR
schedule arranges. If this average requirement
is emitted slowly reinforcers will be delivered
slowly, and if it is emitted rapidly reinforcers
will be delivered rapidly. The direct relation-
ship between reinforcement rate and response
rate on VR schedules is described by the feed-
back function,

Ri,= (1/i)R,,t, (3)

which is a line with intercept equal to zero
and slope equal to the reciprocal of the average
ratio requirement. For VR schedules, Equa-
tion 3 is true by definition because it describes
a defining, or necessary, property of these
schedules. However, the linear feedback de-
scribed by Equation 3 can be arranged inde-
pendently of a ratio contingency because 1/fn
is simply a number that can assume any finite
value greater than zero.

Because Equation 2 was written to describe
responding on simple VI schedules, it is evi-
dent that the linear system theory requires the
composite of Equation 3 on Equation 2 to
describe responding on a VI schedule to which
a linear feedback loop has been added. This
type of schedule is not difficult to arrange.
Reinforcement on a VI-plus-linear-feedback
schedule is delivered according to a time-based,
or interval, contingency, as on a simple VI
schedule. However, reinforcement rate on this
type of schedule increases linearly with re-
sponse rate according to Equation 3. In other
words, throughout the session the effective av-
erage interreinforcement interval (or VI value,
i.e., 1/Rjn) varies directly with the average
interresponse time (1 /ROJ). Higher response
rates produce smaller mean VI values (i.e.,
higher reinforcement rates) and lower re-
sponse rates produce larger mean VI values
(i.e., lower reinforcement rates). According to
the linear system theory, responding on this
type of schedule must occur in the following
manner. An initial response rate produces an
initial reinforcement rate according to Equa-
tion 3. This reinforcement rate produces a new
response rate according to Equation 2, which
in turn produces a new reinforcement rate ac-
cording to Equation 3, and so on. The equi-
librium condition is obtained by substituting
Equation 3 into Equation 2 and solving for
Rout, The result, which will be discussed in
detail later, is an equation that expresses equi-
librium response rate as a function of fi.

In McDowell's (1979, 1980) suggested ap-
proach to theVR case, VR schedules are treated
mathematically as if they were VI schedules
with linear feedback loops. In other words, the
two types of schedule are assumed to be equiv-
alent. If this assumption is valid, response out-
puts produced by VI-plus-linear-feedback
schedules should be indistinguishable from
those produced by ordinary VR schedules. For
example, the high response rates that VR
schedules are known to generate (Baum, 1981)
should also be produced by VI schedules with
linear feedback loops. As another example,
some researchers (e.g., Green, Kagel, & Bat-
talio, 1982; but cf. Mazur, 1983) have reported
that the function relating response rate and
average ratio requirement on VR schedules is
bitonic; that is, response rate first increases and
then decreases as the average ratio require-
ment increases. If this is a reliable property of
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Fig. 2. Average response rates of McDowell and Wixted's (1986) human subjects on VR (filled circles) and VI-
plus-linear-feedback (unfilled circles) schedules. Error bars (±1 SE) are shown unless they were less than or equal to
the diameter of the data point. The quantity, n, is the reciprocal of the slope of the linear feedback function (Equation
3). For the VR schedules, n1 also represents the mean ratio requirement. (From "Variable-ratio schedules as variable-
interval schedules with linear feedback loops" by J. J McDowell and J. T. Wixted, 1986, Journal of the Experimental
Analysis of Behavior, 46, 315-329. Copyright by the Society for the Experimental Analysis of Behavior, Inc. Reprinted
by permission.)

VR responding, then it should also be observed
on VI schedules with linear feedback loops.
The assumption that VR and VI-plus-lin-

ear-feedback schedules are equivalent was
tested by McDowell and Wixted (1986). In
one phase of their experiment, each of 4 human
subjects pressed a lever for monetary rein-
forcement on five VR schedules with mean
ratio requirements (ni) of 15, 30, 60, 120, and
240. In a second phase of the experiment, the
subjects worked on five VI schedules with lin-
ear feedback loops (Equation 3) that repro-
duced the feedback properties of the VR sched-
ules. It is important to recognize that although
the two types of schedule had identical feed-
back properties, they arranged different types
of reinforcement contingencies. The interval
contingencies arranged by the VI-plus-linear-
feedback schedules permitted subjects to wait

until a scheduled interval lapsed before re-
sponding. This was not possible on the VR
schedules because of the response-based ratio
contingencies that these schedules arranged.
McDowell and Wixted found that the re-
sponse outputs produced by the two types of
schedule were indistinguishable. Some of the
results are shown in Figure 2, where each
subject's average response rates on the VR
(filled circles) and the VI-plus-linear-feedback
schedules (VI +; unfilled circles) are plotted
against ni. For each subject the average re-
sponse rates at a given fi on the two types of
schedule were very similar. The response rate
versus fi functions for the two types of schedule
were also very similar. McDowell and Wixted
further noted that the similarity in response
outputs on the two types of schedule extended
to the details of responding. For example, both
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Fig. 3. Cumulative records from one of McDowell and Wixted's (1986) human subjects. The top two records
show the subject's final 50 min of responding at ni = 15 on the VR and the VI-plus-linear-feedback (VI+) schedules.
The bottom two records show the subject's final 50 min of responding at ni = 240 on the two types of schedule. In all
records, the pen reset every 10 min, and within 10-min periods it reset every 400 responses. Downward deflections of
the pen indicate reinforcer deliveries. (From "Variable-ratio schedules as variable-interval schedules with linear feedback
loops" by J. J McDowell and J. T. Wixted, 1986, Journal of the Experimental Analysis of Behavior,46, 315-329.
Copyright by the Society for the Experimental Analysis of Behavior, Inc. Reprinted by permission.)

types of schedule produced high, steady re-
sponse rates at most fns, occasional brief pauses
that ended in abrupt transitions to the response
rate that prevailed before the pause, and, in 2
subjects (H36 and H37), "strained" respond-
ing at ni = 240 that consisted of alternating
periods of zero and very rapid response rates
(cf. Ferster & Skinner, 1957). All of these

details can be seen in Figure 3, which repro-
duces cumulative records from one of Mc-
Dowell and Wixted's subjects. The records
shown represent the subject's final 50 min of
responding at fn = 15 and at fi = 240 on the
two types of schedule (VI+ = VI-plus-linear-
feedback schedule). As illustrated in Figure 3,
the cumulative records from the two types of
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schedule in this experiment were very similar.
McDowell and Wixted concluded that VR and
VI-plus-linear-feedback schedules are equiv-
alent and, consequently, that the assumption
entailed by the VI-plus-linear-feedback ap-
proach to the VR case is valid.

Given that this initial assumption has been
shown to hold, the next step in pursuing the
VI-plus-linear-feedback account of the VR case
is to identify the characteristics ofVR respond-
ing that must be accounted for by the math-
ematical theory. Following this, the theory will
be developed in detail.

THE EMPIRICAL CHARACTERISTICS
OF BEHAVIOR MAINTAINED BY

VR SCHEDULES
The first important characteristic of behav-

ior on VR schedules is the form of the function
relating response rate and fi. Although VR
schedules have been used in a variety of con-
texts in many experiments, only four studies
(Brandauer, 1958; Green et al., 1982; Mazur,
1983; McDowell & Wixted, 1986) have yielded
enough parametric data from single-alterna-
tive VR schedules to permit an examination
of the form of the response rate versus fn func-
tion. Before discussing these studies it is nec-
essary to consider what Baum (1981) has re-
ferred to as the obligatory postreinforcement
pause. This pause consists of three (possibly
overlapping) components, namely, the time re-
quired to move from the feeder to the oper-
andum, the time after the end of the reinforce-
ment cycle that may be required to finish
ingesting the reinforcer, and the time that may
be occupied by species-specific postprandial
behavior like snout washing. According to
Baum (1981), the cumulative obligatory pause
time should be subtracted from the session time
when calculating response rate. Failure to do
so has little effect on the calculated response
rate when reinforcers are delivered relatively
infrequently, as on VR schedules with mod-
erate to high mean ratio requirements and on
most VI schedules. However, when reinforcers
are delivered at very high rates, as on VR
schedules with low mean ratio requirements,
failure to subtract the cumulative obligatory
pause time from the session time results in
calculated response rates that are spuriously
low. To properly evaluate the form of the re-
sponse rate versus fi function, Baum recom-

mended that response rates be corrected for
obligatory pausing by using the shortest mean
postreinforcement pause on a given VR series
as an estimate of the obligatory pause. We
follow Baum's recommendation here.
The first set of parametric VR data is from

McDowell and Wixted's (1986) experiment
with human subjects, which was described ear-
lier. The response rates from this experiment
do not require correction for obligatory paus-
ing because the nonconsummatory reinforcer
used in the experiment did not require move-
ment away from the operandum and could not
have entailed ingestion time or time for post-
prandial behavior. The response rates on the
VR and the VI-plus-linear-feedback schedules
in this experiment are listed in Table Al in
Appendix A and, as noted earlier, are plotted
against ni in Figure 2. Each subject's response
rate declined as ni increased, although the de-
cline was more marked for H36 and H37 than
for the other 2 subjects.
The second set of parametric VR data is

from Brandauer's (1958) study of key pecking
in pigeons. Three pigeons' responding was
reinforced by brief periods of access to mixed
grain on VR schedules with mean ratio re-
quirements of 10 to 600 responses per rein-
forcement. The smallest mean postreinforce-
ment pauses for the 3 birds in numerical order
were 0.81,0.98, and 0.91 s. These mean pauses,
each of which occurred at fi = 10, were used
to correct the individual birds' response rates.
The corrected rates are listed in Table A2 in
Appendix A. Bird P17 did not show sustained
responding at ni = 400, and neither P14 nor
P17 showed sustained responding at ni = 600.
In addition, Braundauer discarded a fourth
bird (P16) from the experiment because of
unstable responding. Also omitted from Table
A2 are the response rates on schedules of con-
tinuous reinforcement, which are fixed-ratio
(FR) rather than VR schedules. The corrected
response rates of Brandauer's pigeons are plot-
ted against ni in the top left panel of Figure 4.
Evidently, response rate declined with ni for
the individual birds. There was some indica-
tion of bitonicity in P15's function (viz., the
increasing limb from the first to the second fi),
but this was not confirmed by any other bird's
results. The mean corrected response rate
across the 3 birds, plotted in the top right panel
of Figure 4, shows a smooth decline with ni.
The third set of parametric VR data is from
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Fig. 4. Average corrected response rates of Brandauer's (1958) pigeons and Mazur's (1983) rats on VR schedules.
Data from individual subjects are plotted in the left panels and data averaged across subjects are plotted in the right
panels. The quantity, ni, represents the reciprocal of the slope of the linear feedback function (Equation 3) and the
mean ratio requirement of the VR schedules.

Mazur's (1983) study of lever pressing in rats.
The responding of 7 food-deprived rats was
reinforced by brief periods of access to 0.12
mL of sweetened milk on VR schedules with
mean ratio requirements of 10 to 80 responses
per reinforcement. The smallest mean postre-
inforcement pauses for Ml through M3 were
2.13, 1.71, and 3.33s. These mean pauses,
which were obtained at fi = 10, 40, and 20,
respectively, were used to correct each rat's
individual response rates. The smallest mean
postreinforcement pauses for Rl through R4
were 2.06, 1.96, 3.08, and 3.75 s. These mean
pauses, which were obtained at fn = 20, 20,
10, and 10, respectively, were used to correct
each of these rats' individual response rates.
The corrected rates for all rats are listed in

Table A3 in Appendix A and are plotted
against ni in the bottom left panel of Figure 4.
As was the case for the first two sets of data,
response rate declined with ni for each subject
in this experiment. The individual functions
for M2 and Rl showed slight bitonic trends.
In addition, the rate of decline of response rate
with fi varied considerably among subjects (as
in McDowell & Wixted's, 1986, experiment).
For example, R3's rate of decline was modest,
whereas R4's was marked. The mean cor-
rected response rate across the 7 rats, plotted
in the lower right panel of Figure 4, shows a
clear monotonic decline with ni.
The final set of parametric VR data is from

Green et al.'s (1982) study of key pecking in
pigeons. The responding of 4 pigeons was rein-
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forced by brief periods of access to mixed grain
on VR schedules with mean ratio require-
ments of 12.5 to 400 responses per reinforce-
ment. Because Green et al. did not report mean
postreinforcement pauses, the median of the
smallest mean postreinforcement pauses from
Brandauer's (1958) experiment (viz., 0.91 s)
was used to correct the response rates of Green
et al.'s pigeons. The corrected rates are listed
in Table A4 in Appendix A. Inspection of these
data shows that the response rate versus fn
functions were markedly bitonic for 3 of the 4
pigeons. Except for P47, the birds' response
rates increased from fi = 12.5 to fn = 50 and
then decreased as fi increased further. Because
of the constant 40-min session lengths in Green
et al.'s experiment, it is possible that these
bitonic functions were artifacts of satiation at
the two lowest ns. For example, Brandauer
(1958) found that at low ns sessions as brief
as 15 min produced so many reinforcers that
his birds gained weight rapidly. To prevent
satiation, he ended sessions after a specified
number of reinforcements-usually 50, but
never more than 100. The reinforcements per
session in Green et al.'s experiment are listed
in Table A4 in Appendix A. Approximately
200 reinforcers were delivered in each session
at ni = 25 and approximately 300 reinforcers
were delivered in each session at ni = 12.5.
These numbers far exceeded the maximum
that Brandauer found advisable. Evidently, sa-
tiation cannot be ruled out as an explanation
of the bitonic function forms in Green et al.'s
experiment.
To summarize, data from the humans in

McDowell and Wixted's (1986) experiment
and from the pigeons and rats in Brandauer's
(1958) and Mazur's (1983) experiments show
that response rate on VR schedules is a de-
creasing function of the mean ratio require-
ment, ni. Green et al.'s (1982) contradictory
results may be an artifact of satiation.

In addition to the decreasing form of the
response rate versus ni function, two further
characteristics of VR responding have been
reported with some frequency. One is the oc-
currence of strained, two-valued (i.e., nearly
zero or very rapid) responding at high mean
ratio requirements (Baum, 1981). This phe-
nomenon was first reported by Ferster and
Skinner (1957) in 2 pigeons responding on VR
schedules at ni = 360, and in a third pigeon
responding on a VR schedule with a mean

ratio requirement of roughly 380 (estimated
from their Figure 487A). Similarly, on the
basis of his postreinforcement pause data,
Braundauer (1958) argued that responding
becomes unstable on VR schedules at high ns.
Finally, 2 of the 4 human subjects in Mc-
Dowell and Wixted's (1986) experiment
showed strained responding on VR schedules
at fi = 240.
The second additional characteristic of VR

responding is the existence of a boundary ni
beyond which responding fails to occur. Fers-
ter and Skinner (1957), Baum (1981), and
Zeiler (1977, 1979) have discussed this phe-
nomenon. As one example, recall that in Bran-
dauer's (1958) experiment, responding could
not be maintained in 1 bird at ni = 400 and
could not be maintained in another at ni = 600.
Similarly, based on the cumulative records in
McDowell and Wixted's (1986) experiment,
it seems unlikely that H36's and H37's re-
sponding could have been maintained at ns
much larger than 240.

Besides incorporating the three character-
istics of VR responding just discussed, a sat-
isfactory mathematical theory must account for
the differences between behavior on VR sched-
ules and behavior on VI schedules. One dif-
ference is that strained responding occurs on
VR schedules but not on VI schedules, even
when the mean interreinforcement interval of
the VI schedule is large (Baum, 1981). A sec-
ond difference is that responding ceases
abruptly at a boundary ni on VR schedules but
does not cease abruptly under any circum-
stance on VI schedules (Baum, 1981; Zeiler,
1977, 1979). A third difference is that respond-
ing occurs at a higher rate on VR than on VI
schedules (Catania, Matthews, Silverman, &
Yohalem, 1977; Ferster & Skinner, 1957;
Matthews, Shimoff, Catania, & Sagvolden,
1977; Mazur, 1983; McDowell & Wixted,
1986; Zuriff, 1970).

THE MATHEMATICAL THEORY OF
BEHAVIOR MAINTAINED BY

VR SCHEDULES
In this section the VI-plus-linear-feedback

account of the VR case will be developed for-
mally; it will then be evaluated against the
empirical characteristics ofVR responding that
were identified in the last section. Following
this individual treatment of the VR case, the
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formal and empirical differences between be-
havior on VR and VI schedules will be dis-
cussed.

VR Schedules
As noted earlier, the VI-plus-linear-feed-

back approach to the VR case is reasonable
from a purely formal point of view. The func-
tions R (t) and B (t) for the VI case also describe
reinforcement and responding on VR sched-
ules, and the addition of a linear feedback loop
incorporates the feedback that VR schedules
necessarily arrange. According to this view, the
composite of Equation 3, the linear feedback
function, on Equation 2, the mean-value rate
equation (which is obtained from R (t) and
B(t) for the VI case), should provide a com-
plete description of behavior on VR schedules.
To develop this account, it will be conve-

nient to rewrite Equation 2 as

Rou = {ln[me1/Ri- + blI, (4)
where m = (PBe-W*)/(,yPRe-w) and b = e-w* -
(PBe-w*)/(yPR). Equation 4 is just an algebraic
rearrangement of Equation 2; its complete der-
ivation is given in Appendix B. Equation 4 is
written to emphasize the relationship between
response rate, Rout, and reinforcement rate, R0..
This relationship, in the form specified by
Equation 4, is known to hold for VI schedules
(McDowell, 1980; McDowell & Kessel, 1979).
According to the present account it must also
hold for VR schedules. That is, a particular
reinforcement rate on a VR schedule must pro-
duce the response rate required by Equation
4. Of course, on VR schedules reinforcement
rate is not under the experimenter's control
but is generated by the organism according to
Equation 3, the linear feedback function. The
slope of this function (or its reciprocal, fi) is
the true independent variable. We may obtain
an expression relating response rate and ni by
substituting Equation 3 into Equation 4:

Rout= Iln[men/Rot + blI (5)

This equation cannot be solved analytically for
Rout, However, given specific values of fi and
of the parameters m and b, it can be solved by
numerical techniques such as Newton's method
(e.g., Heading, 1970).

According to the present account of the VR

case, Equation 5 must describe the relationship
between equilibrium response rate and fi on
VR schedules, and Equation 4 must describe
the relationship between equilibrium response
rate and reinforcement rate on these schedules.
The latter must be the case even though re-
inforcement rate on VR schedules is not under
experimental control. It should also be clear
that, regardless of the appropriateness of the
VR analysis, the linear system theory requires
Equations 4 and 5 to describe responding on
VI schedules to which linear feedback loops
have been added.

It will be helpful to first examine the general
forms of Equations 4 and 5, examples of which
are shown in Figure 6. The curves in the right
panels of the figure are plots of Equation 4,
the general form of which has been discussed
in detail elsewhere (McDowell, 1979, 1980,
1987; McDowell & Kessel, 1979). The curves
in the left panels are plots of Equation 5. It
is evident from these plots that Equation 5
entails a boundary ni, beyond which the equa-
tion has no finite positive solution. For positive
values of fn less than the boundary ni, two finite
response rates greater than zero satisfy the
equation. One of these rates is small (near
zero), the other is much larger, and the two
approach each other, the larger rate changing
more rapidly, as fn increases toward its bound-
ary value.
The source of the unusual back-bending

form of Equation 5 is a point of inflection in
Equation 4 that occurs at a very low rein-
forcement rate (McDowell, 1979). At the rate
equation's point of inflection its curvature
changes from concave upward to concave
downward, its first derivative (or slope) is a
maximum, and its second derivative is zero.
The rate equation's point of inflection and rel-
evant differential properties are discussed in
more detail in Appendix B.
The top panel of Figure 5 illustrates how

the rate equation's point of inflection interacts
with the linear feedback function, Equation 3,
to produce forms like those shown in the left
panels of Figure 6. The curve in the top panel
of Figure 5 is a stylized plot of Equation 4
that greatly exaggerates its change in curva-
ture. In an actual plot of Equation 4 (as shown,
e.g., in the right panels of Figure 6), the point
of inflection occurs at such a small reinforce-
ment rate that the change in curvature is not
visually detectable for typical ranges of rein-
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Fig. 5. The rate equation and feedback functions for

VR (top and middle panels) and VI (bottom) schedules.
In all panels the curve with the response-rate asymptote
is a stylized representation of the rate equation. The equa-
tion's point of inflection has been moved far to the right
and its change in curvature has been greatly exaggerated.
In all panels, filled circles represent equilibrium, or steady-
state, response rates. The lines in the top panel are VR
feedback functions; the curves with reinforcement-rate as-

ymptotes in the bottom panel are stylized representations
of VI feedback functions. The operation of a VR feedback
loop is illustrated in the middle panel. The loop drives an

initial response rate, A, to the next higher equilibrium rate
(filled circle), and it drives an initial response rate, a, to
zero. Notice that the feedback loop always drives respond-
ing away from the lower nonzero equilibrium rate.

forcement and response rates. Accompanying
the stylized plot of the rate equation in the top
panel of Figure 5 are three examples of a linear
feedback function, Equation 3. In Figure 5's
coordinates the feedback function becomes more
nearly vertical as n~increases. At points where
the rate equation and a feedback function in-
tersect (filled circles), Equations 4 and 3 are
satisfied simultaneously, so Equation 5 is also
satisfied. According to the present theory, re-
sponse rates at these points may be observed
in the steady state. Response rates not repre-
sented by points of intersection can be observed
only in transition states. As shown in the top
panel of Figure 5, two widely separated re-
sponse rates satisfy Equation 5 at small ns. As
ni increases and the linear feedback function
becomes more nearly vertical, the two response
rates that satisfy Equation 5 approach each
other. When the feedback function is tangent
to the rate equation, as illustrated by the mid-
dle line in the top panel of Figure 5, only one
equilibrium response rate satisfies Equation 5.
As fi increases still further, the feedback func-
tion and the rate equation cease to intersect in
the first quadrant, which means that Equa-
tions 4 and 3 cannot be satisfied simultaneously
by any positive response rate and that, con-
sequently, Equation 5 does not have a finite
positive solution. If all the response rates that
simultaneously satisfy Equations 4 and 3 (and
that as a consequence satisfy Equation 5) are
plotted against their respective ns, the plot takes
a form like that shown in the left panels of
Figure 6. The boundary fi in these plots is the
reciprocal of the slope of the feedback function
that is tangent to the rate equation.

It is important to recognize that the unusual
form of Equation 5 is due to Equation 4's
change in curvature. If Equation 4 were con-
cave downward for all positive reinforcement
rates (as is, e.g., Herrnstein's, 1970, hyper-
bola), then every linear feedback function
would intersect the equation exactly once, and
no feedback function could be tangent to it in
the first quadrant. Thus, a single equilibrium
response rate would be associated with each
fn, and as fn increased, the equilibrium response
rate would decrease continuously to zero as
opposed to jumping discontinuously to zero at
a boundary value.

Consider now those VR schedules for which
Equation 5 has two solutions. The dynamics
of the linear feedback loop ensure that only
one of the two response rates that satisfy Equa-
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Fig. 6. Response rates of a human (top panels) and corrected response rates of a pigeon (middle panels) and of a
rat (bottom panels) on various VR schedules. In the left panels the response rates are plotted against ni; in the right
panels they are plotted against the scheduled reinforcement rates, as explained in the text. The error bars in the top
panels represent ±1 SE. The smooth curves in the left and right panels are plots of Equations 5 and 4, respectively.
The proportion of variance accounted for by the fitted equation is given in each panel.

tion 5 is likely to be observed under most cir-
cumstances. The operation of this loop is il-
lustrated in the middle panel of Figure 5. The
curve is a stylized representation of Equation
4, the shape of which is greatly distorted so
that the operation of the linear feedback loop
can be illustrated clearly. The straight line is
a linear feedback function, and the filled circles
represent the two response rates that satisfy
Equation 5. The feedback loop operates as

follows. An initial response rate, A, produces
a reinforcement rate, B, according to the linear
feedback function. But this reinforcement rate
generates a higher response rate, A', according
to the rate equation. The higher response rate
produces a higher reinforcement rate, B', which
in turn generates an even higher response rate,
and so on, until responding reaches the equi-
librium rate indicated by the filled circle in the
upper right corner of the panel. Similarly, an
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initial response rate, a, produces a reinforce-
ment rate, b, according to the linear feedback
function. But this reinforcement rate only sup-
ports a lower response rate, a', according to
the rate equation. The lower response rate
produces a lower reinforcement rate, b', which
in turn supports an even lower response rate,
and so on, until responding is driven to zero.
In general, a nonequilibrium response rate that
occurs in a region where the rate equation lies
above the feedback function (e.g., at A) is driven
upward to the next higher equilibrium rate.
Similarly, a nonequilibrium response rate that
occurs in a region where the rate equation lies
below the feedback function (e.g., at a) is driven
downward to the next lower equilibrium rate,
which may be zero.

It follows from the dynamics of the feedback
loop that, when responding is at the higher
equilibrium rate, any moderate change in rate
will be resisted by the loop in such a way that
responding will be returned to the equilibrium
rate. Consequently, responding at the higher
equilibrium rate will tend to be stable. Simi-
larly, when responding is at zero, the devel-
opment of a moderately positive response rate
will be resisted by the feedback loop in such
a way that responding will be returned to zero.
Hence responding at zero will also tend to be
stable. In contrast to these two cases, when
responding is at the lower nonzero equilibrium
rate, any moderate change in rate will be en-
hanced by the feedback loop. Responding will
be driven away from this equilibrium rate,
upward toward the higher equilibrium rate,
or downward toward zero, depending on the
direction of the initial change in rate. Thus
responding at the lower nonzero equilibrium
rate is unlikely to be observed in the steady
state. Although zero is a stable equilibrium,
responding at this rate is also unlikely to be
observed in the steady state, as long as ni is
small or moderate. At small and moderate fis,
the two nonzero equilibria are widely sepa-
rated, and the lower nonzero equilibrium is
close to zero. Consequently, most response rates
occur in the region where the rate equation
lies above the feedback function and hence will
be driven to the higher equilibrium rate. For
the few (very low) response rates that occur
in the region where the rate equation lies be-
low the feedback function, ordinary variability
in responding may produce a rate that exceeds
the lower nonzero equilibrium rate, in which

case responding again would be driven to the
higher equilibrium rate.
The foregoing analysis shows that, accord-

ing to the theory, when two response rates
satisfy Equation 5, the higher rate will usually
be observed in the steady state. There are two
exceptions to this rule. The first occurs when
behavior is highly variable. In this circum-
stance, responding at the higher equilibrium
rate may drop temporarily below the lower
nonzero equilibrium rate, even when the two
rates are widely separated. If this happens,
responding will be driven to zero. Alterna-
tively, responding at zero may rise temporarily
above the lower nonzero equilibrium rate, in
which case it will be driven to the higher equi-
librium rate. Thus, when behavior is highly
variable, responding may oscillate between the
higher equilibrium rate and zero. The second
exception to the rule occurs when the three
equilibria (including zero) are close together,
which happens when fi is near its boundary
value. In this circumstance, ordinary response
rate variability may produce the same oscil-
lation between the higher equilibrium rate and
zero. As before, this is because responding at
the higher rate may drop temporarily below
the lower nonzero equilibrium rate, and re-
sponding at zero may rise temporarily above
it. To describe the details of the time course
of this oscillation, it will be necessary to de-
velop a theory of behavioral dynamics.
McDowell (1979) has discussed the distinction
between dynamic and equilibrium theories.
To summarize, the linear system theory re-

quires response rate to vary with fn according
to Equation 5. When the equation has two
solutions, the theory requires the higher re-
sponse rate to be observed in the steady state
under most circumstances. However, as ni nears
its boundary value, responding may oscillate
between the higher response rate and zero. A
similar oscillation in behavior may be observed
at smaller ns if response rate is highly variable.
When ni exceeds its boundary value, the theory
requires responding to drop discontinuously to
zero.

Comparison with Data
It is evident that the linear system theory

accounts for the occurrence of strained, two-
valued responding at high mean ratio require-
ments and for the existence of a boundary n
beyond which responding fails to occur. These
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are the second and third empirical character-
istics of VR responding that were identified in
the last section. It remains to examine the em-
pirical adequacy of Equations 4 and 5 in de-
scribing existing data. Obviously, Equation 5
must describe the declining response rate ver-
sus fi function that was identified earlier.
The empirical adequacy of Equations 4 and

5 was examined by fitting the equations to the
parametric data from Brandauer (1958), Green
et al. (1982), Mazur (1983), and McDowell
and Wixted (1986). Scheduled ns were used
in the fits of Equation 5, and "scheduled" re-
inforcement rates calculated from Equation 3
with ni set equal to its scheduled value were
used in the fits of Equation 4. The two equa-
tions were fitted jointly such that a single pair
of parameter values, m and b, was obtained
for both equations. Given these parameter val-
ues, Equation 4's point of inflection and the
boundary n entailed by Equation 5 were cal-
culated. The least-squares fitting procedure,
and the methods for calculating Equation 4's
point of inflection and Equation 5's boundary
n, are discussed in detail in Appendix C. The
estimates of m and b obtained for each data
set are listed in Table C1 in Appendix C.
The results of the fits of Equations 4 and 5

are summarized in Table 1. The proportions
of variance accounted for (pVAF) by the equa-
tions, listed in the last two columns of the table,
show that Equations 4 and 5 described the
data well. Including Green et al.'s (1982)
questionable data, Equation 4 accounted for a
median of 86% of the individual-subject data
variance, and Equation 5 accounted for a me-
dian of 81% of the individual-subject data vari-
ance. Excluding Green et al.'s data, the median
percentages of variance accounted for by
Equations 4 and 5 were 92% and 84%, re-
spectively.

In McDowell and Wixted's (1986) exper-
iment with human subjects, Equations 4 and
5 described the data from the VR and the VI-
plus-linear-feedback schedules equally well.
The proportions of variance accounted for on
both types of schedule were smaller for H31
and H32 than for H36 and H37 because there
was less variance to account for in the former
subjects' data (as is apparent in Figure 2). In
Brandauer's (1958) experiment, the individ-
ual-subject data varied somewhat about the
fitted equations (see Figure 4), but when re-
sponse rates were averaged across birds, the

equations accounted for nearly all of the vari-
ance. In Mazur's (1983) experiment the equa-
tions described most of the individual-subject
data quite well, and accounted for nearly all
of the variance when response rates were av-
eraged across rats. In Green et al.'s (1982)
experiment Equations 4 and 5 accounted for
some of the individual-subject data poorly. Ex-
cept for P47, the deviations from the fitted
equations were systematic, as discussed earlier.
Although Equations 4 and 5 accounted for a
fair proportion of the variance when the data
were averaged across birds, the deviations in
this case were also systematic (as can be seen
in Table A3 in Appendix A).
The pVAFs in Table 1 show that Equations

4 and 5 typically accounted for similar pro-
portions of the data variance in their respective
domains. The large discrepancies in the two
pVAFs for R4 in Mazur's (1983) experiment
and for P47 in Green et al.'s (1982) experi-
ment were due to the omission of a data point
in calculating the pVAFs for Equation 5. In
these two cases (as well as for R2 in Mazur's
experiment), the largest ni exceeded the bound-
ary fi and, consequently, a residual could not
be obtained for the response rate at the largest
fn. In calculating the pVAFs, this data point
was omitted for Equation 5 but not for Equa-
tion 4, which means that the former equation
had less variance to account for.

Examples of the fits of Equations 4 and 5
are shown in Figure 6. The response rates of
a human, a pigeon, and a rat on VR schedules
are shown in the top, middle, and bottom panels
of the figure. The subjects whose data are plot-
ted are identified in the figure. The smooth
curves in the left and right panels are plots of
Equations 5 and 4 respectively, and the pro-
portion of variance accounted for by the plotted
equation is given in each panel. As the ex-
amples in Figure 6 illustrate, Equations 4 and
5 provided a good visual description of the
data.
The coordinates of Equation 4's point of

inflection and of Equation 5's boundary VR
schedule are listed in Table 1 for each data
set. Notice that the points of inflection invari-
ably occurred at very low reinforcement and
response rates. The boundary ni represents the
largest mean ratio requirement that can sup-
port responding for a given subject, according
to the theory. Evidently, the response rate at
the boundary ui represents the lowest nonzero
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Table 1

Coordinates of Equation 4's point of inflection (rft/hr = reinforcements per hour; rsp/min =
responses per minute), coordinates of the boundary VR schedule entailed by Equation 5, and
proportions of variance accounted for (pVAF) by Equations 4 and 5, for joint fits of the two
equations to data from McDowell and Wixted (1986; VI+ = VI plus linear feedback), Bran-
dauer (1958), Mazur (1983), and Green et al. (1982). All quantities in the table were calculated
from unrounded data.

Point of inflection Boundary VR pVAF

Subject rft/hr rsp/min n rsp/min Eq. 4 Eq. 5

McDowell and Wixted, 1986
H31 (VR) 0.6 13.2 1,677 36.0 0.84 0.83
H31 (VI+) 0.5 15.3 2,192 41.0 0.85 0.84
H32 (VR) 0.7 11.6 1,307 32.2 0.79 0.79
H32 (VI+) 0.6 13.7 1,764 37.3 0.76 0.75
H36 (VR) 1.3 4.9 264 14.7 0.94 0.89
H36 (VI+) 1.3 5.2 273 15.7 0.99 0.99
H37 (VR) 1.4 5.0 240 15.3 0.99 0.97
H37 (VI+) 1.3 5.6 300 17.0 0.96 0.93

Brandauer, 1958
P14 1.1 9.7 625 30.2 0.78 0.68
P15 1.0 15.4 1,113 47.8 0.73 0.64
P17 1.1 9.6 625 29.7 0.85 0.82
Average data 1.1 11.6 789 36.1 0.97 0.96

Mazur, 1983
Ml 1.2 1.5 82 3.7 0.77 0.60
M2 1.5 2.4 103 6.8 0.89 0.79
M3 1.4 2.2 100 5.7 0.96 0.93
RI 1.4 2.7 131 7.6 0.87 0.82
R2 1.4 1.6 70 3.8 0.99 0.95a
R3 1.2 1.7 87 4.3 0.97 0.95
R4 1.5 1.9 77 4.9 0.95 0.72a
Average data 1.4 2.1 91 5.4 0.98 0.94

Green et al. 1982
P47 1.2 5.4 317 16.0 0.94 0.72a
P48 0.9 9.8 787 29.0 0.48 0.46
P49 0.9 8.8 695 25.8 0.64 0.58
P50 0.8 9.8 903 28.2 0.75 0.73
Average data 1.0 7.9 581 23.4 0.86 0.85

Median of all individual subjects 0.86 0.81

Excluding response rate at the largest ni, which exceeded the boundary fn.

response rate that can be sustained in a given
subject on a VR schedule. According to the
theory, when fi is increased beyond the bound-
ary value listed in the table, responding drops
discontinuously from the listed rate to zero.

It is clear from the pVAFs in Table 1 and
the illustrative plots in Figure 6 that Equation
5 accurately describes the decreasing form of
the response rate versus n1 function that char-
acterizes behavior on VR schedules.

Differences Between VR and VI Schedules
The first difference between behavior on

VR and VI schedules is that strained respond-
ing occurs on the former but not on the latter
schedules. The absence of this phenomenon on

VI schedules is accounted for by the linear
system theory in a straightforward way. Con-
sider the bottom panel of Figure 5, which shows
a stylized representation of the rate equation
and stylized representations of three VI feed-
back functions. The exact form of the VI feed-
back functions is a matter of some dispute.
Power functions (Rachlin, 1978), hyperbolas
(e.g., Prelec, 1982; Staddon & Motheral, 1978),
and other function forms (e.g., Nevin & Baum,
1980) have been proposed. All of the proposed
forms have two properties in common, namely,
a reinforcement rate asymptote that is ap-
proached rapidly, and a first derivative that
decreases continuously. These two properties
are incorporated in the stylized VI feedback
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functions plotted in the bottom panel of Figure
5. It is clear from the figure that the points at
which the rate equation and the VI feedback
functions intersect reproduce the form of the
rate equation. Notice that the rate equation
always lies above the VI feedback function for
response rates less than a given equilibrium
rate, and that it always lies below the VI feed-
back function for response rates greater than
a given equilibrium rate. This means that the
VI feedback loop always drives changes in re-
sponse rate back to the equilibrium rate and
never to zero or any other rate. It follows from
this property of the VI feedback loop that
strained responding cannot occur on a VI
schedule.
The second difference between behavior on

VR and VI schedules is that responding ceases
abruptly at a boundary value on the former
but not on the latter schedules. This difference
is also accounted for by the linear system the-
ory. As illustrated in the bottom panel of Fig-
ure 5, every VI feedback function intersects
the rate equation exactly once. This means that
response rate declines continuously to zero as
the VI schedule becomes leaner. In other words,
the theory asserts that responding cannot drop
discontinuously to zero on a VI schedule, even
when the mean interreinforcement interval is
very large.
To understand the remaining difference be-

tween behavior on VR and VI schedules it is
necessary to consider the linear system theory's
account of behavior on concurrent schedules.
McDowell (1979,1980,1987) and McDowell
and Kessel (1979) have shown that the theory
requires behavior on concurrent schedules to
be governed by the following equation:

RIOUT - (P2B/P2 (R) N (6)
R20UT (P1B/PiR) R2IN

The numerical subscripts refer to the two re-
sponse alternatives. The uppercase subscripts
on the response and reinforcement rates in-
dicate that the widths of the reinforcement and
response pulses in R(t) and B(t) have been
assumed to be negligible (McDowell, 1979,
1980, 1987; McDowell & Kessel, 1979). Re-
call that the PB parameters reflect the aver-
siveness of responding on the two alternatives
and that the PR parameters reflect the values
of the reinforcers. The quotient, PB/PR, is a
kind of cost-benefit ratio. According to the lin-
ear system theory (McDowell, 1987), the value
of this ratio reflects all properties of reinforce-

ment and responding that influence behavior
on a given alternative, other than reinforce-
ment rate and time-invariant characteristics of
the organism (,y). Evidently, Equation 6 is a
form of biased matching (Baum, 1974), where
bias is given by the quotient of the PB/PR
ratios. According to Equation 6, bias in favor
of the first alternative is observed whenever
PB/PR is smaller (i.e., whenever the cost-ben-
efit ratio is more favorable) for the first alter-
native than for the second. Similarly, bias in
favor of the second alternative is observed
whenever PB/PR is smaller for the second al-
ternative than for the first. In practice, the
linear system theory treats the concurrent
schedule as a method of measuring the PB/PR
ratios. McDowell (1980, 1987) has explained
how numerical values are assigned to these
ratios.

Several factors are known to affect bias and
hence, according to the linear system theory,
the cost-benefit ratios on concurrent schedules.
These factors include differences in the type
or amount of reinforcement obtained from the
component schedules, differences in the type
or aversiveness of the response required in each
component, and differences in the type of
schedule arranged in each component (Baum,
1974). Regarding the last source of bias,
Herrnstein and Heyman (1979) found that
pigeons' key pecking on concurrent VR VI
schedules is biased in favor of the VR schedule.
According to the linear system theory, this
means that the cost-benefit ratio associated with
responding on VR schedules is smaller (i.e.,
more favorable) than the cost-benefit ratio as-
sociated with responding on VI schedules. This
may be due to differences in response topog-
raphy on the two schedules (Baum, 1981), or
to differences in the feedback functions that
the two schedules entail (McDowell, 1979).
The different VI and VR cost-benefit ratios

have important consequences for the linear
system theory's account of single-alternative
responding. Notice that the cost-benefit ratios
in Equation 6 also appear in Equations 2, 4,
and 5. Consider Equation 2, which is repro-
duced here for convenience:

Rout

Iln[1 + P(eR - 1)] - w*}

(2)
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Recall that Equation 4 is just an algebraic
rearrangement of this equation. The linear
system theory requires Equation 2 to describe
the relationship between response and rein-
forcement rate on single-alternative VR and
VI schedules. But because Herrnstein and
Heyman's (1979) results show that the cost-
benefit ratio, PB/PR, is smaller for VR sched-
ules, Equation 2 requires responding to occur
at a higher rate on VR than on VI schedules,
all else being equal (i.e., same organism, re-
sponse, reinforcer, and reinforcement rate).
Thus, the linear system theory accounts for
the third difference between behavior on VR
and VI schedules.

DISCUSSION
We have shown that the linear system the-

ory accounts for the empirical properties of
behavior maintained by VR schedules and for
the empirical differences between behavior
maintained by VR and VI schedules. An im-
portant feature of the theory is that it permits
quantitative prediction of many properties of
responding on single-alternative VR sched-
ules, given data from a series of VI schedules
and from a series of concurrent VR VI sched-
ules. The parameters mvi and bvl (subscripted
to indicate that they apply to VI schedules) in
Equation 4 can be estimated from the VI data.
The bias parameter in Equation 6 can be es-
timated from the concurrentVR VI data. Given
known values of mvl, bvy, and of the bias pa-
rameter, the values of mVR and bVR (subscripted
to indicated that they apply to VR schedules)
in Equations 4 and 5 can be calculated. In
Appendix D it is shown that

(PVRB/PVRR)
MVI (PVIB/PVIR)

and

bVR = 1 + (PVRB/PVRR) (bvI - 1),
(PVIB/PVIR)

where (PVRB/PVRR)/(PVIB/PVIR) is the bias pa-
rameter in Equation 6 (assuming the VR
schedule is arranged on the second alternative).
These values of mVR and bVR completely de-
termine the response rate versus reinforcement
rate function (Equation 4) and the response
rate versus fi function (Equation 5) for re-

sponding on VR schedules. Thus, all details
of single-alternativeVR responding can be cal-

culated in advance of obtaining data from these
schedules. For example, the response rate at
a given ni can be calculated from Equation 5,
and the response rate at a given reinforcement
rate can be calculated from Equation 4. The
difference between the response rate on a VR
and a VI schedule at a given reinforcement
rate can be calculated from Equation 4 using
the estimated values of mvi and bvy and the
calculated values of mVR and bVR. In addition,
the boundary fi beyond which responding will
cease, and the response rate at the boundary
n, can be calculated by the method explained
in Appendix C.
As noted in the introduction, the linear sys-

tem theory provides an excellent description of
responding on single-alternative VI schedules.
Among other phenomena, the theory accounts
for the form of the response rate versus rein-
forcement rate function on VI schedules
(McDowell, 1980; McDowell & Kessel, 1979)
and for the dependence of the y asymptote of
this function on reinforcer value and response
aversiveness (McDowell & Wood, 1984,1985).
Thus, the linear system theory provides a uni-
fied account of responding on single-alterna-
tive VI and VR schedules. There are at least
six other mathematical theories of responding
on VI and VR schedules. Three of these are
based on optimality principles (Baum, 1981;
Rachlin, 1978; Staddon, 1979) and three are
based on other types of principles, namely,
regulation with respect to set points (Hanson
& Timberlake, 1983), matching (Herrnstein,
1970; Pear, 1975), and arousal (Killeen, 1982).
Each account will be considered briefly here.

Baum's (1981) theory depends on the as-
sumption that organisms maximize net gain,
which is a joint function of the reinforcement
obtained for responding and the cost associated
with it. Cost in Baum's theory increases rap-
idly with response rate (cf. McDowell, 1979;
Rachlin, 1978). Baum showed that his opti-
mality theory describes many features of sin-
gle-alternative VI and VR responding. How-
ever, the predictions of the theory were based
on the additional assumption that the y as-
ymptote of the response rate versus reinforce-
ment rate function is constant, an assumption
that has been shown to be invalid for VI sched-
ules (McDowell & Wood, 1984, 1985).

Staddon's (1979) theory is based on the as-
sumption that organisms allocate time to in-
strumental responding such that the distri-
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bution of time spent responding, consuming
reinforcers, and doing other things is as close
as possible to the distribution that would result
if the three types of activity were freely avail-
able. Although Staddon's theory accounts for
a number of properties of VI and VR respond-
ing, McDowell and Wood (1984) argued that
its description of the form of the response rate
versus reinforcement rate function for VI
schedules is often inaccurate. In addition, Baum
(1981) noted that Staddon's theory does not
account for the abrupt cessation of responding
on VR schedules at a boundary fn.

Rachlin's (1978) theory is conceptually sim-
ilar to Staddon's (1979). It is based on the
assumption that organisms distribute their time
among responding, consuming reinforcers, and
doing other things in ways that maximize value,
which is a function of the time spent engaging
in each of the three types of activity. This
theory does not account for the relationship
between reinforcer value and the y asymptote
of the response rate versus reinforcement rate
function (McDowell & Wood, 1984), nor does
it unambiguously account for the cessation of
responding on VR schedules at a boundary fn
(Baum, 1981).
Among the nonoptimality theories, Herrn-

stein's (1970) matching theory of VI perfor-
mance is best known. Pear (1975) extended
the theory to VR schedules. Like Baum's
(1981) theory, matching theory depends on the
assumption that the y asymptote of the re-
sponse rate versus reinforcement rate function
is invariant with respect to changes in rein-
forcement parameters like magnitude or im-
mediacy. As mentioned earlier, McDowell and
Wood (1984, 1985) found that this assumption
was violated on VI schedules (but cf. Mc-
Dowell, 1986). In addition, Baum (1981) ar-
gued that matching theory cannot account for
the cessation of responding at a boundary ni
(see also Timberlake, 1977).

Killeen's (1982) arousal theory is based on
the assumption that reinforcers generate
arousal that decays with time but that may
cumulate when reinforcers are presented re-
peatedly. McDowell and Wood (1985) argued
that Killeen's theory, in its present form, does
not explicitly permit properties of the y as-
ymptote of the response rate versus reinforce-
ment rate function to vary with response aver-
siveness. Killeen (1982) pointed out problems
with his extension of the theory to VR sched-

ules, and he noted that further development of
the theory was required.
The final theory was proposed by Hanson

and Timberlake (1983). It is based on the as-
sumption that instrumental and contingent re-
sponding are regulated with respect to separate
set (or base) points, and that under schedule
constraint behavior represents a compromise
between schedule-produced deviations from the
set points. Hanson and Timberlake's theory
accounts for certain properties of responding
on single-alternative schedules, but apparently
it cannot account for the cessation of respond-
ing on VR schedules at a boundary ni or for
the higher response rates on VR as compared
to VI schedules. In addition, because Hanson
and Timberlake do not use specific feedback
functions, their theory does not address the
form of the response rate versus fn function on
VR schedules.
The linear system theory's account of re-

sponding on VI and VR schedules evidently
fares well in comparison to the six mathe-
matical accounts reviewed here. Extensions of
the theory to other, more complicated, cases
are of course possible. Some of these extensions
have been discussed by McDowell (1979).
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APPENDIX A
Reinforcement and response rates on VR schedules from experiments by Bran-

dauer (1958), Green et al. (1982), Mazur (1983), and McDowell and Wixted
(1986) are listed in the four tables of this appendix. All rates from Brandauer's,
Mazur's, and Green et al.'s experiments have been corrected for obligatory pausing
(Baum, 1981). As explained in the text, the response rates from McDowell and
Wixted's experiment did not require correction for obligatory pausing. Multiple
exposures to a single fi in Green et al.'s and Mazur's experiments were combined
by averaging the raw data and then calculating the reinforcement and response
rates from the averages. Because Brandauer did not report raw data, multiple
exposures in his experiment were combined by averaging the response rates.

Table Al

Mean obtained reinforcement rates (rft/hr = reinforce-
ments per hour) and mean response rates (rsp/min =
responses per minute) on VR and VI-plus-linear-feedback
schedules from McDowell and Wixted's (1986) 4 human
subjects. The quantity, nT, is the reciprocal of the slope of
the linear feedback function (Equation 3). For the VR
schedules ni also represents the average ratio requirement.
All quantities in the table were calculated from unrounded
data.

VI-plus-linear-
VR feedback

ni rft/hr rsp/min rft/hr rsp/min

H31
15 493.2 121.9 468.0 123.5
30 255.6 120.1 244.8 123.1
60 135.6 118.6 126.0 121.3

120 56.4 114.8 56.4 119.0
240 34.8 113.9 30.0 118.3

H32
15 495.6 124.0 480.0 124.5
30 230.4 118.2 238.8 123.3
60 111.6 116.8 111.6 119.0
120 50.4 113.8 57.6 118.3
240 24.0 110.8 30.0 116.5

H36
15 496.8 124.7 530.4 138.4
30 223.2 111.2 267.6 134.0
60 116.4 113.6 122.4 118.3
120 54.0 108.6 56.4 102.3
240 2.4 27.2 14.4 41.0

H37
15 584.4 146.0 554.4 143.1
30 289.2 146.4 278.4 141.6
60 145.2 140.4 124.8 120.1

120 52.8 99.7 60.0 121.6
240 7.2 25.4 7.2 49.8

Table A2

Corrected reinforcement and response rates on VR sched-
ules from Braundauer's (1958) 3 pigeons. Each bird's
response rates (rsp/min = responses per minute) were
corrected for obligatory pausing using the bird's smallest
mean postreinforcement pause. These pauses were 0.81,
0.98, and 0.91 s for the 3 birds in numerical order. Because
Brandauer did not report obtained reinforcement rates,
the reinforcement rates (rft/hr = reinforcements per hour)
listed in the table were calculated from Equation 3 using
the corrected response rates. Mean corrected reinforcement
and response rates across the 3 birds are also listed in the
table. The quantity, nl, is the reciprocal of the slope of the
linear feedback function (Equation 3) and the mean ratio
requirement of the VR schedule. All quantities in the table
were calculated from unrounded data.

ni rft/hr rsp/min

P14
10 1,440.5 240.1
50 242.9 202.4

100 98.4 164.1
200 39.9 133.1
400 19.8 132.1

P15
10 1,518.2 253.0
50 379.6 316.3

100 170.3 283.8
200 80.2 267.5
400 26.6 177.3
600 20.1 201.4

P17
10 1,235.4 205.9
50 219.2 182.6

100 115.6 192.6
200 46.3 154.5

Mean
10 1,398.0 233.0
50 280.5 233.8

100 128.1 213.5
200 55.5 185.0
400 23.2 154.7
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Table A3

Corrected reinforcement and response rates on VR sched-
ules from Mazur's (1983) 7 rats. Each rat's response rates
(rsp/min = responses per minute) and obtained reinforce-
ment rates (rft/hr = reinforcements per hour) were cor-
rected for obligatory pausing using the rat's smallest mean
postreinforcement pause. The pauses were 2.13, 1.71, and
3.33 s for Ml through M3, and 2.06, 1.96, 3.08, and 3.75 s
for Rl through R4. Mean corrected reinforcement and
response rates across the 7 rats are also listed in the table.
The quantity, nt, represents the reciprocal of the slope of
the linear feedback function (Equation 3) and the mean
ratio requirement of the VR schedules. All quantities in
the table were calculated from unrounded data.

ni rft/hr rsp/min

10
20
40
80

10
20
40
80

10
20
40
80

10
20
40
80

10
20
40
80

10
20
40
80

10
20
40
80

10
20
40
80

Ml

489.8
83.5
57.2
8.5

M2
665.0
380.8
91.6
32.2

M3
573.7
217.7
83.8
33.1

RI
532.3
300.9
107.1
35.3

R2
870.1
431.1
103.4
16.8

R3
395.6
200.3
74.4
8.1

R4
1,043.5
369.1
59.9
21.5

Mean
652.9
283.4
82.5
22.2

81.6
28.6
39.0
11.4

110.8
126.7
62.7
44.0

95.6
72.6
56.5
30.9

Table A4
The average number of reinforcements in each 40-min
session (rft/sess = reinforcements per session) and the
corrected reinforcement and response rates on VR sched-
ules for Green et al.'s (1982) 4 pigeons. Because Green
et al. did not report postreinforcement pauses, each bird's
response rates (rsp/min = responses per minute) and ob-
tained reinforcement rates (rft/hr = reinforcements per
hour) were corrected for obligatory pausing using a 0.91-s
pause, which is the median of the smallest mean postrein-
forcement pauses from Brandauer's (1958) experiment.
Mean data across the 4 birds are also listed in the table.
The quantity, ni represents the reciprocal of the slope of
the linear feedback function (Equation 3) and the mean
ratio requirement of the VR schedules. All quantities in
the table were calculated from unrounded data.

nt rft/sess rft/hr rsp/min

P47
12.5
25
50

100
200
400

362.9
154.7
85.7
47.2
9.4
1.4

631.2
246.5
132.9
72.1
14.2
2.1

131.6
102.9
110.8
119.1
45.7
13.0

P48
12.5
25
50

100
200
400

331.2
248.7
133.4
57.2
24.5
10.3

568.1
411.8
210.8
87.6
37.1
15.5

118.5
171.6
176.2
146.6
124.2
103.5

P49

85.4
99.4
67.2
48.1

146.1
131.9
66.0
25.9

63.1
64.8
52.3
9.8

169.1
118.6
44.2
19.2

12.5

25
50

100
200
400

12.5

25
50
100
200
400

316.2
204.7
111.1
56.9
25.3
8.4

538.9
332.8
174.0
87.2
38.3
12.6

P50
330.9
191.4
107.5
48.2
24.2
9.2

567.5
309.5
168.1
73.6
36.6
13.8

111.7
138.6
144.7
145.6
128.2
76.5

118.5
128.8
140.1
122.1
120.4
90.0

Mean
12.5
25
50

100
200
400

335.3
199.8
109.4
52.4
20.8
7.3

576.4
325.1
171.4
80.1
31.5
11.0

120.1
135.5
143.0
133.4
104.6
70.8

107.4
91.8
55.4
27.0
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APPENDIX B

Derivation of Equation 4

Equation 4 is an algebraic rearrangement of Equation 2, which is

ROU.= {ln[1 + P (el/Ri+w 1 - w*}1 (2)

Inverting, adding w* to, and exponentiating both sides of this equation produces

e11Rou+W= 1 + PB - 1),

and

PB _PB
el/Roew* = 1 + p (e/RI)ew _ p

'YPR 'P
Multiplying both sides by e-w*,

el/R°t = ew* + Pe (el/R) PBe
,yPRew 'YPR

and rearranging terms,

e1/O= PBe (el/Rj.) + e_W-______
'yPRe-w'P

Letting (PBe-w*)/(yPRe-w) = m and e-w* - (PBe-w*)/(yPR) = b, we have

eI R.ut= me1/Ri. + b.
Finally, taking the natural logarithm of both sides of this expression, and then
inverting, produces

Rout = {ln[meI/Ri- + b (4)
which is Equation 4.

The Rate Equation's Point of Inflection and Differential Properties
The first two derivatives of Equation 4, the rate equation, are

R ' = e/ (Bl1)ROut u(ln U)2R in2'()
and

Rout - m2e2/Rin(2 + In u) - (1 + 2Rin)umel/Rinln u (B2)
out ~~~~u2(In u)'Rin4

where u = mel/Ri. + b, and m and b are defined as for Equation 4.
As noted in the text, the rate equation has a point of inflection at a very low

reinforcement rate (McDowell, 1979). At this point, the equation's curvature
changes from concave upward to concave downward. The existence of the point
of inflection is confirmed by the behavior of the rate equation's first two derivatives.
Up to the point of inflection, the first derivative (or slope) of the rate equation is
positive and increasing. At the point of inflection the first derivative is maximal,
and beyond it the first derivative is positive and decreasing. The second derivative
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of the rate equation, which is the slope of the first derivative, is positive up to
the rate equation's point of inflection. The second derivative passes through zero
at the point of inflection (because the first derivative's slope is zero at its maxi-
mum), and then it becomes negative. The behavior of the second derivative allows
one to calculate the rate equation's point of inflection. The x-coordinate of the
point of inflection is obtained by setting the second derivative (Equation B2) equal
to zero which, after some rearrangement, gives

0 = mel/Rin(2 + ln u) - (1 + 2Ri,)u ln u. (B3)
The solution of this equation for Rin gives the x-coordinate of the point of
inflection. Equation B3 cannot be solved analytically, but for specific values of
m and b it can be solved by a numerical procedure such as Newton's method
(e.g., Heading, 1970). The y-coordinate of the point of inflection is obtained by
substituting the value of Rin obtained from Equation B3 into Equation 4.

APPENDIX C
Parameter Estimates

Estimates of the parameters, m and b, in Equations 4 and 5 were obtained for
each set of data from Brandauer (1958), Green et al. (1982), Mazur (1983), and
McDowell and Wixted (1986) by fitting either Equation 4 or a linear approx-
imation of Equation 5. For all experiments except those of McDowell and Wixted,
response rates were corrected for obligatory pausing as explained in the text.

In the fits of Equation 4, "scheduled" reinforcement rates were used as the
independent variable. These rates were calculated from Equation 3 by setting fi
equal to its scheduled value. (Notice that, except for Table A2, the tables in
Appendix A list obtained rather than scheduled reinforcement rates.) Equation
4 was fitted by an iterative least-squares method like that described by McDowell
and Kessel (1979).

In the fits of Equation 5, an approximate function form was used. Equation
5 can be fitted directly by iteratively adjusting the values of m and b with respect
to a least-squares criterion. Every time the parameter values are adjusted, Equa-
tion 5 must be solved numerically for the predicted response rate at each ni. The
differences between the predicted response rates and the corresponding observed
response rates are then squared and summed to obtain the residual mean square.
A simpler method of fitting Equation 5 was used here. This method entails first
writing the equation in a form that permits analytic solution. Equation 5 is

R = In[me /ROut + bl}, (5)
where m and b are defined as in the text. Assuming that response and reinforcement
rates in Equation 4 are expressed in the conventional units of responses per
minute and reinforcements per hour, the units on fi/ROUT in Equation 5 must
be converted to hours per reinforcement to produce identical units in the two
equations. This is accomplished by inserting the conversion factor, 60 min/hr,
into Equation 5 as follows:

R = {ln[me /(60R=ut) + bJj
The parameters m and b are directly interchangeable between Equation 4 and
this version of Equation 5. Inverting and exponentiating both sides of the above
equation produces

el/Rout = men/(6ORout) + b.
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This expression can be made more tractable by considering the series expansion
of et, which is

ex=1 + x + x2/2! + x3/3! + ...+ xr/r! +...
(Heading, 1970). When x is small the second and higher order terms of the series
contribute relatively little to its sum. Hence, when x is small,

ex- 1 + x, (C2)

(cf. McDowell, 1980, 1987). Evidently, for the variables in Equation Cl, this
approximation is best when ni is small and response rate is large, and it becomes
worse as fi increases and response rate decreases. Substituting the appropriate
versions of Equation C2 into both sides of Equation Cl produces

1 + 1/Rout= m[1 + fi/(60Rout)] + b.

The advantage of this form of Equation 5 is that it can be solved for Rout:
-m 1

out 60(m+b-1) +m+b-1
(C3)

Finally, letting

M = -m
60(m + b - 1)

and
I

B=m+ ~(C4)m + b -1 '(4
Equation C3 can be written

Rout= Mfi + B. (C5)
This equation, which is an approximation of Equation 5, is a line with a negative
slope. It can be fitted by ordinary linear regression methods. Equations C4 show
that the regression coefficients, M and B, are related to the parameters, m and b,
as follows:

m = -60M/B and b = (60M + 1)/B + 1. (C6)
Thus, estimates of m and b in Equation 5 can be obtained by fitting the linear
form, Equation C5.
The methods of fitting Equations 4 and 5 described above are just two different

ways of estimating the parameters m and b. Both methods were used for each set
of data from Brandauer (1958), Green et al. (1982), Mazur (1983), and McDowell
and Wixted (1986). The parameter estimates from the method that produced the
better joint fit of Equations 4 and 5 are listed in Table C1. The equation from
which the estimates were obtained is also listed (LA5 = linear approximation of
Equation 5). The values of m and b in Table C1 were used in all subsequent
calculations. It may be worth emphasizing that for a given set of data the values
of m and b listed in Table Cl were used in both Equations 4 and 5.

Proportion of Variance Accounted For
Using the parameter values listed in Table C1, the proportions of variance

accounted for (pVAF) by Equations 4 and 5 were calculated by the method
described by McDowell (1981). These proportions are listed in the last two
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Table Cl

Equation fitted (LA5 = linear approximation of Equation
5), and estimated values of m and b in Equations 4 and
5, for data sets from McDowell and Wixted (1986; VI+ =
VI plus linear feedback), Brandauer (1958), Mazur (1983),
and Green et al. (1982). Values ofm and b were calculated
from unrounded data and are reported to nine decimal
places.

Equa-
tion

Subject fitted m b

McDowell and Wixted, 1986
H31 (VR) 4 0.016 940 430 0.991 353 600
H31 (VI+) 4 0.011 507 300 0.996 639 900
H32 (VR) 4 0.024 045 790 0.984 236 300
H32 (VI+) 4 0.015 871 140 0.992 266 500
H36 (VR) LA5 0.180 351 060 0.827 073 300
H36 (VI+) LA5 0.175 398 490 0.831 420 500
H37 (VR) LA5 0.205 867 250 0.800 234 900
H37 (VI+) LA5 0.157 821 680 0.848 732 900

Brandauer, 1958
P14 LA5 0.070 284 377 0.934 430 000
P15 LA5 0.037 345 907 0.966 091 400
P17 4 0.069 887 040 0.934 990 000
Mean data LA5 0.054 309 156 0.949 918 400

Mazur, 1983
Ml LA5 0.660 682 690 0.353 947 600
M2 LA5 0.526 551 570 0.481 244 500
M3 LA5 0.532 644 310 0.477 795 400
Rl LA5 0.393 387 540 0.616 664 000
R2 4 0.827 445 500 0.178 360 900
R3 LA5 0.623 308 480 0.389 542 200
R4 LA5 0.740 486 764 0.265 631 431
Mean data LA5 0.603 857 510 0.404 984 600

Green et al. 1982
P47 4 0.145 033 470 0.862 782 800
P48 4 0.050 254 520 0.956 103 800
P49 LA5 0.057 301 473 0.949 738 900
P50 4 0.040 392 080 0.967 215 000
Mean data LA5 0.071 250 501 0.935 910 900

columns of Table 1. In the case of Equation 5, the residuals were based on
predicted response rates calculated by numerically solving Equation 5 at each fi.
For reasons explained in the text, the larger of the two solutions of Equation 5
was used as the predicted response rate. For 3 of the 25 data sets, the largest fi
exceeded the boundary ni entailed by Equation 5 and, consequently, a residual
could not be calculated at that fi. In these three cases, which are identified in
Table 1, the data point at the largest ni was omitted. It is important to recognize
that the pVAFs in the last column of Table 1 are the proportions of variance
accounted for by Equation 5, not by its linear approximation (Equation C5),
even though the latter equation may have been used to estimate the parameters
m and b.
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Point of Inflection
Using the parameter values listed in Table C1, Equation 4's point of inflection

was calculated by the method described in Appendix B. The coordinates of the
point of inflection for each data set are listed in Table 1.

Boundary VR
To determine the boundary VR, it is necessary to find the unique feedback

function that is tangent to the rate equation. Referring to the top panel of Figure
5, it is clear that the slope of the tangent feedback function (in Figure 5's coor-
dinates) is equal to the first derivative, or slope, of the rate equation at the point
of tangency. Consequently, at the point of tangency,

Rou,t_ dR00,
Rin dRin' (07)

where Rout and Ri, are the coordinates of the point of tangency, their ratio is the
slope of the tangent feedback function (in Figure 5's coordinates), and dR.ut/dRin
is the first derivative of the rate equation at the point of tangency. To find the
tangent feedback function, it is necessary to find the coordinates, Rout and Rin,
that satisfy Equation C7. The tangent feedback function is completely determined
by its slope (the ratio of these coordinates) and by its intercept (zero).

Substituting the first derivative of the rate equation, as given by Equation Bi
(Appendix B), into Equation C7 gives

R,, me l/Ri.
Rmin u(ln U)2Rin2'

or
me l/Ri.

out u(ln u)2Rm' (08)
where u = meI/Rin + b and m and b are defined as for Equation 4. Equation C8
expresses Rout at the point of tangency as a function of Rm at that point. But at
this (and at every other) point, Rout is also given by the rate equation,

R = {ln[me'/Ri. + bl} (4)

or, with m, b, and u defined as for Equation C8,

Rout = 1/ln u.

Substituting this expression into Equation C8 reduces the number of unknowns
to one:

1 mel/Ri.

ln u u(ln u)2R'
or

me1/Rin
R. u ln u'

and

0 1- mel/RinRinu ln u (09)
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The only reinforcement rate that satisfies Equation C9 is the reinforcement rate
at the point of tangency. This rate can be obtained, given known values of the
parameters m and b, by numerically solving Equation C9 for Ri". The response
rate at the point of tangency can be calculated from Equation 4, using the
reinforcement rate obtained from Equation C9 and the known values of m and
b. The ratio of the reinforcement and response rates obtained in this way is the
slope of the linear feedback function (Equation 3) that is tangent to the rate
equation. Evidently, the quotient of the coordinates of the point of tangency,
Rout/Rin (x 60 min/hr if the units on the two rates are responses per minute
and reinforcements per hour, respectively), is the mean ratio requirement of the
boundary VR schedule. Using the parameter values listed in Table Cl, the
boundary fi and the predicted response rate at that ni (which is just Rou, at the
point of tangency) were calculated for each set of data from Brandauer (1958),
Green et al. (1982), Mazur (1983), and McDowell and Wixted (1986) and are
listed in Table 1.

APPENDIX D

If data are available from a series of VI schedules and from a series of concurrent
VR VI schedules, the linear system theory can be used to calculate the properties
of responding on single-alternative VR schedules. The parameters m and b in
Equation 4 can be estimated from the VI data, and the bias parameter in Equation
6 can be estimated from the concurrent VR VI data. The problem is to show
how these estimates can be used to calculate m and b in Equations 4 and 5 for
the VR case. In the following discussion, m and b for VI responding will be
represented by mvy and bv1, m and b for VR responding will be represented by
mVR and bVR, and PB/PR for the VI and VR cases will be represented by PVIB/
PVIR and PVRB/PVRR. In this notation the bias parameter in Equation 6 becomes
(PVRB/PVRR)/(PVIB/PVIR), assuming that the VR schedule is arranged on the
second alternative. In all calculations in this appendix, w and w* (the widths of
the reinforcement and response pulses) will be assumed to be negligible (i.e.,
0; see McDowell, 1979, 1980, 1987; McDowell & Kessel, 1979).
As can be seen from Appendix B, when w and w* are negligible, Equation 4

for the VI case entails the parameters

mvi = (1/'Y)(PVIB/PVIR) (D1)
and

bvI = 1 - (1fY)(PVIB/PVIR)* (D2)
Similarly, when w and w* are negligible, Equation 4 for the VR case entails the
parameters

mVR = (1/'Y)(PVRB/PVRR) (D3)
and

bVR = 1 - (1/'Y)(PVRB/PVRR)* (D4)
Let us first consider the relationship between mvi and mVR. Dividing Equations

Dl and D3 by the appropriate PB/PR parameter, we have

mvi = 1/

(PVIB/PVIR)
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and

(PVRB/PVRR)
It follows that

mvR mvi
(PVRB/PVRR) (PVIB/PVIR)

and

(PVRB/PVRR)
mvR = mvi (p /F) (D5)V VIBIPVIRJ

The value of mVR can be calculated from this equation given known values of
mvi (obtained from VI data) and (PVRB/PVRR)/(PVIB/PVIR) (obtained from con-
current VR VI data).
To find the relationship between bv1 and bVR, Equations D2 and D4 are

rearranged to yield
1 - bv

(PVIB/PVIR)
and

1 -bV
(PVRB/PVRR)

It follows that
1 - bVR 1bv_

(PVRB/PVRR) (PVIB/PVIR)
Solving for bVR gives

bvR 1 + (PvRB/PVRR) (bv - 1). (D6)
(PVIB/PVIR)

The value of bVR can be calculated from this equation given known values of bv1
and (PVRB/PVRR)/(PVIB/PVIR).
As explained in the text, Equations D5 and D6 permit complete quantitative

prediction of responding on single-alternative VR schedules, given data from
single-alternative VI schedules and from concurrent VR VI schedules. Actually,
Equations D5 and D6 permit complete quantitative prediction of responding on
any of the three types of schedule given data from the other two.

In estimating the parameter, (PVRB/PVRR)/(PVIB/PVIR), it may be necessary to
use a function form other than Equation 6. For example, Equation 6 cannot be
used when the data show undermatching, which is responding that is nearer
indifference than required by matching (Baum, 1974, 1979). McDowell (1980)
showed that Equation 6 is a simplified version of

RX = (P2B/P2R) (el/R2i+w - 1

R2,.t (PlBlPlR) \ellRlii+- - 1J
which has an additional parameter, w, that accommodates undermatching. Equa-
tion D7 is the appropriate function form to use when it is necessary to take
undermatching into account.
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