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Decision Rules for Recognition Memory Confidence Judgments

Vincent Stretch and John T. Wixted
University of California, San Diego

According to the standard signal-detection model of recognition memory, confidence
judgments for recognition responses are reached in much the same way that old-new decisions
are reached (i.e., on the basis of criteria situated along the strength-of-evidence axis). The
question investigated here is how the confidence criteria shift when recognition accuracy is
manipulated across conditions. Although several theories assume that the old-new decision
criterion shifts when recognition accuracy changes, less is known about how the confidence
criteria move. An analysis of data previously reported by R. Ratcliff, G. McKoon, and M.
Tindall (1994) and some new data reported here suggest that the confidence criteria fan out on
the decision axis as d' decreases. This result is qualitatively consistent with the predictions of a
likelihood ratio model, although the data did not support the stronger quantitative predictions
of this account.

When recognition accuracy is manipulated, study partici-
pants are often assumed to change the criterion they use to
decide whether a test item is old or new. If, for example,
ample time is given to study a list of words, the target items
on the recognition test will seem considerably more familiar
than the lures. If participants are aware of that fact, then they
might reasonably require that a test item seem quite familiar
before declaring it to be "old." On the other hand, if learning
conditions are less favorable (e.g., if the list items are
presented rapidly), then the targets on the recognition test
may seem only slightly more familiar than the lures. Under
these conditions, participants might require a lower level of
familiarity before calling an item "old" (because a lower
level of familiarity is compatible with the item having
appeared on the list).

Figure 1 illustrates this idea using the standard assump-
tions of signal-detection theory (Macmillan & Creelman,
1991). This model assumes that the decision axis represents
a continuous strength-of-evidence variable, such as familiar-
ity. According to this account, the familiarity values associ-
ated with the target items and lure items are both normally
distributed, with the mean of the target distribution being
situated higher on the decision axis than the mean of the lure
distribution. In this example, the variances of the target and
lure distributions are equal, but in practice they differ
somewhat (Ratcliff, Sheu, & Gronlund, 1992). To arrive at a
recognition decision, participants are assumed to set a
decision criterion somewhere along the decision axis. Any
test item with a familiarity exceeding the criterion is judged
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to be old ("yes"); otherwise the item is judged to be new
("no"). The ideal location for the decision criterion is
midway between the two distributions because that is the
point that maximizes the proportion of correct responses. If
participants respond in a more or less optimal way, the
criterion will be set at a relatively high point on the
familiarity axis in the strong condition (Figure 1, upper
panel) and at a relatively low point in the weak condition
(lower panel). This criterion-shift mechanism has been used
to explain changes in the false alarm rate that tend to
accompany changes in the hit rate when recognition accu-
racy is manipulated. That is, an increase in the hit rate is
usually accompanied by a decrease in the false alarm rate (a
phenomenon known as the mirror effect), perhaps because
the decision criterion shifts across conditions (Gillund &
Shiffrin, 1984).

A straightforward extension of this basic detection model
holds that confidence judgments are reached in much the
same way that old-new decisions are reached (e.g., Macmil-
lan & Creelman, 1991). That is, as illustrated in Figure 2, a
different criterion for each confidence rating is theoretically
placed somewhere along the decision axis. Familiarity
values that fall above OH receive an "old" response with
high confidence; those that fall between OM and OH receive
an "old" response with medium confidence; and those that
fall between C and OM receive an "old" response with low
confidence. On the other side of the criterion, familiarity
values that fall below C but above NM receive a "new"
response with low confidence; those that fall below NM but
above NH receive a new response with medium confidence;
and those that fall below NH receive a new response with
high confidence.

The relationship between the movement of the old-new
decision criterion across conditions and the movement of the
remaining confidence criteria is not well specified, and a
consideration of this issue raises several interesting ques-
tions. For example, if the decision criterion shifts between
conditions (as in Figure 1), do the confidence criteria shift as
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Figure 1. Illustration of a signal detection interpretation of
recognition performance in strong and weak conditions. The figure
shows the theoretical shift in the placement of the decision criterion
across conditions.

well? If so, how do they shift and what accounts for the
observed pattern of movement? The next section describes
several possible patterns of movement and their implications
for theories of recognition memory decision processes.

Strength of Evidence

Figure 2. Illustration of the placement of confidence criteria in a
signal detection framework. The old-new decision criterion is
represented by C, and the remaining criteria represent familiarity
values beyond which "old" (O) and "new" (N) responses of higher
confidence, medium (M) or high (H). are given.

Decision Rules for Confidence Judgments

Lockstep Model

The simplest model might assume that as the decision
criterion moves to the left to stay between the target and lure
distributions, the confidence criteria move to the left as well
by a corresponding amount. We refer to this model, which is
illustrated in the top panel of Figure 3, as the lockstep model
because all of the criteria move together. This model has also
been referred to as the distance from criterion model because
the position of a particular confidence criterion is always a
fixed distance from the old-new decision criterion (Bal-
akrishnan & Ratcliff, 1996). The lockstep model is both
computationally simple and intuitively plausible. To use this
strategy, a participant only needs to know the means of the
target and lure distributions (in order to keep the decision
criterion roughly midway between them). When the decision
criterion is moved, the confidence criteria are moved by a
corresponding amount in the same direction.

Range Model

Alternatively, perhaps the OH criterion is set some fixed
distance above the mean of the target distribution, and the
NH criterion is placed some fixed distance below the mean of
the lure distribution. The decision criterion, C, is then placed
midway between these two extreme confidence ratings. This
model (see middle panel of Figure 3) is similar to a theory
that was proposed by Parducci (1984) and recently endorsed
by Hirshman (1995). If the participant knows where the
mean of the target distribution is relative to the mean of the
lure distribution, placing various decision criteria in relation
to them should not be difficult. Unlike the lockstep model,
which predicts that the various confidence criteria will
change in parallel as d' changes, this model predicts that the
confidence criteria will converge as d' decreases. That is, the
minimum distance between OH and NH occurs when d' — 0.

Note that if participants were to choose to adopt this
strategy they would be behaving in a way that is almost the
opposite of ideal. In particular, high-confident errors would
increase rather dramatically as d' decreased. A more optimal
strategy would involve adjusting the confidence criteria in
such a way that high-confident responses would remain
highly accurate even as overall performance decreased. The
next model predicts that participants will behave in just that
way.

Likelihood Ratio Model

If participants maintain constant likelihood ratios for each
of the decision criteria, the confidence criteria should
diverge rather than converge as d' decreases. According to
this account (see bottom panel of Figure 3), the old-new
decision criterion, C, is placed in such as way as to maintain
a likelihood ratio of 1. Similarly, the OH criterion is placed in
such a way as to maintain a larger likelihood ratio, such as
10 to 1. That is, any item that is 10 or more times as likely to
have come from the target distribution than the lure distribu-
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tion receives an "old" response with high confidence.
Similarly, the NH criterion is placed in such a way as to
maintain a small likelihood ratio, such as 1 to 10 (.1). That is,
any item with only a 1 in 10 chance (or less) of having been
drawn from the target distribution receives a "no" response
with high confidence. As d' decreases, this model assumes
that the criteria move in such a way as to maintain these
confidence-specific likelihood ratios.

The likelihood ratio model assumes that the participant
not only knows the location of the target and lure distribu-

tions but also knows their mathematical forms. If the
distributions are Gaussian, the target distribution with mean
d' and standard deviation a is given by

SN(d',v) =

and the lure distribution with mean 0 and standard deviation
o" is given by

NM c OM OH
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Figure 3. Illustration of the movement of the confidence criteria
as a function of d' according to the lockstep, range, and likelihood
ratio models (upper, middle, and lower panels, respectively). In
each panel, the top figure represents a strong condition and the
bottom figure represents a weak condition. N = new; H = high;
M = medium; C = decision criterion; O — old.

where / is a value along the familiarity axis. Using this
knowledge, the old-new decision criterion, C, is placed at
the point on the familiarity axis where the height of the
signal distribution equals that of the noise distribution (i.e.,
where the likelihood ratio is 1). This is the optimal location
of the decision criterion because this is where the odds that
the test item was drawn from the target distribution exactly
equal the odds that it was drawn from the lure distribution.
For any familiarity value greater than that, the odds that the
item was drawn from the target distribution (i.e., that it
appeared on the list) are better than even, in which case an
"old" response makes sense. As indicated earlier, the
remaining confidence criteria are placed in such a way as to
maintain specific odds ratios that are greater than or less than
1. If OH is associated with a likelihood ratio of 10 to 1, then
that confidence criterion is placed on the familiarity axis at
the point where the height of the target distribution is 10
times the height of the lure distribution regardless of the
value ofd'.

For any given likelihood ratio, L, the criterion is placed on
the familiarity axis at the point/that satisfies the following
equation:

0)

The right side of the equation is simply the ratio of the height
of the target (signal plus noise) distribution to the height of
the lure (noise) distribution at the point / . Solving this
equation for/yields

(2)

To determine where a particular criterion is placed, one need
only enter the value of L theoretically associated with that
criterion. For example, theoretically, the old-new decision
criterion is placed at the point where L = 1. Substituting 1
for L (and Cfor/) in Equation 2 reveals that C = d 72, which
we already knew to be true. That is, according to this model,
the decision criterion should be placed midway between the
target and lure distributions no matter what the value of d' is.
If OH is placed at the point where the odds are 10 to 1 in
favor of the item having been drawn from the target
distribution, then Equation 2 indicates that

OH = d'/2 + \n(\0)/d'

= drf2 + 230fd'.
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In other words, OH is placed at a point higher than d'fl but
by an amount that varies with d'. The more general version
of this equation is OH = dfl2 + kjAi', where kj is the
constant log likelihood ratio associated with OH. Similarly, if
NH is placed at the point where the odds are only 1 in 10 in
favor of the item having been drawn from the target
distribution, then Equation 2 indicates that

NH = d'I2 + \n(0.10)/d'

= d'12 - 2.30/d'.

The more general version of this equation is NH = d'fl +
k2ld\ where k2 is the constant log likelihood ratio associated
with NN. This model predicts that the distance between OH

and NH on the familiarity axis will be inversely related to d'.
That distance (i.e., OH minus NH) is given by

OH-NH = {d'fl + kxid') - {d'/2 + kjd1)

= (*! + k2)/d'.

Thus, as d' becomes very large, OH and NH should converge
to the point that they coincide on the evidence axis (i.e., the
distance between them should decrease to 0). By contrast, as
d' approaches 0, those two criteria should move infinitely far
apart.

The only previous research directly addressing this issue
was recently reported by Balakrishnan and Ratcliff (1996).
They were mainly concerned with testing whether their data
were more accurately predicted by the distance-from-
criterion (i.e., lockstep) model or the ideal observer (i.e.,
likelihood ratio) model when strength was manipulated, and
their findings were more consistent with the former account.
Our method of analysis differs somewhat from that used by
Balakrishnan and Ratcliff in that we use the predictions of
the lockstep model as a benchmark to gauge the predictions
of the other models. That is, instead of asking which model
offers the most accurate quantitative predictions, we ask
whether the data exhibit statistically significant deviations
from the predictions of the lockstep model and, if so,
whether the observed deviations are in the direction pre-
dicted by the range model or the likelihood ratio model. In a
later section, we consider how the two methods of analysis
might lead to different conclusions.

For the time being, our analysis is based on the assump-
tion that the signal-detection decision axis represents a
strength-of-evidence variable, such as familiarity (cf. Kintsch,
1967), because that is the simplest and most common
assumption. The alternative possibility is that the decision
axis represents a log likelihood ratio scale. This is a central
assumption of Glanzer's attention likelihood theory (Glan-
zer & Adams, 1985; Glanzer, Adams, Iverson, & Kim, 1993)
and will be discussed in a later section.

The kind of experiment needed to differentiate between
the three models shown in Figure 3 is quite simple.
Participants need to be exposed to pure strength lists (weak
vs. strong) followed by a recognition test in which confi-
dence ratings are taken. As described later, these ratings can

be used to estimate the locations of the various confidence
criteria in the two strength conditions. Pure strength manipu-
lations are of most interest here because participants presum-
ably are well aware of the effects of that manipulation on the
strength of targets. That being the case, they have all the
information they need to adjust the decision criterion as
shown in Figure 1. Other manipulations that also affect d',
such as a word frequency manipulation, may differ in this
respect. That is, participants may not appreciate the fact that
low frequency (LF) words are more recognizable than high
frequency (HF) words (Greene & Thapar, 1994; Wixted,
1992). Indeed, perhaps for that reason, some recent evidence
suggests that participants do not use a different decision
criterion for HF and LF words (Hirshman & Arndt, 1997;
Stretch & Wixted, 1998). If the decision criterion does not
shift across conditions, the question of how the confidence
criteria shift does not arise.

A recent experiment by Ratcliff, McKoon, and Tindall
(1994) provided a wealth of pure-strength data that can be
used to test the models shown in Figure 3. That article was
not actually concerned with how the confidence criteria shift
as a function of strength but instead was concerned with the
effect of various manipulations on the slope of the receiver
operating characteristic (ROC). Nevertheless, the data pre-
sented in the appendix of that article can be used to test the
predictions of the lockstep, range, and likelihood ratio
models.

Of the six experiments reported by Ratcliff et al. (1994),
the first three involved substantial manipulations of strength
and a correspondingly large shift in the location of the
decision criterion (as evidenced by a substantial difference
in the false alarm rates associated with the two pure-strength
conditions). The last three involved less substantial manipu-
lations of strength and correspondingly slight movements in
the location of the decision criterion (i.e., the false alarm
rates in the strong and weak conditions did not differ by
much). Thus, we concentrate mainly on the first three
experiments and discuss the remaining three in less detail.
Experiments 1 and 2 of Ratcliff et al. (1994) were based on
data pooled over participants, and we consider those first. In
a subsequent section, we analyze the single-participant data
from Experiment 3 of that article. In addition, because those
results are somewhat ambiguous, we report new single-
subject data as well.

Group Data Analyses: Experiments 1 and 2
of Ratcliff etal . (1994)

In the first experiment reported by Ratcliff et al. (1994),
16 participants were exposed to lists of 32 words, some of
which were weak and some of which were strong. In pure
weak lists, the items were presented for 50 ms each; in pure
strong lists, they were presented for 200 ms each. Following
list presentation, participants were exposed to a standard
yes-no recognition test involving 32 targets randomly
intermixed with an equal number of lures. Participants
responded to each item on a 6-point confidence scale
consisting of 6 = sure old, 5 = probably old, 4 = maybe old,
3 = maybe new, 2 — probably new, and 1 — sure new. The
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second experiment was similar to the first except that it
involved 15 participants and the presentation times in the
pure weak and pure strong conditions were 100 and 400 ras,
respectively.

Table 1 shows the group hit and false alarm rates for the
weak and strong conditions from these two experiments. A
standard mirror effect was observed, which is consistent
with the idea that participants set a higher criterion in the
strong condition than in the weak condition (as in Figure 1).
As described in more detail later, confidence-based ROC
analyses were performed on these data to determine how the
remaining confidence criteria shifted as well. The values of d
shown in Table 1 represent accuracy measures similar to d'
that were derived from those ROC analyses.

ROC Analyses

Estimates of where the various confidence criteria are
placed along the decision axis in a given strength condition
can be obtained in exactly the same way that the placement
of the old-new decision criterion is usually obtained. In
general, d' is computed from a participant's hit and false
alarm rates. Using those values, one can also determine
response bias, p (the likelihood ratio above which a yes
response is given), and C (the placement of the decision
criterion relative to the mean of the lure distribution). For
example, symmetrical hit and false alarm rates of .84 and .16
yield a d' of 2.0, a p of 1, and a criterion placement (C) of
d'il (i.e., C = 1.0 in this example). As with d\ this value of
C represents the criterion's distance from the mean of the
lure distribution in standard deviation units. It can be
computed by simply converting 1 minus the false alarm rate
into a z score. If the decision criterion is placed one standard
deviation above the mean of the lure distribution (as in this
example), then 16% of that distribution falls to the right of
the criterion. Hence, a false alarm rate of .16.

This method of computing the placement of C involves all
"old" responses to lures with a confidence rating of maybe
old or greater (which is to say, all "old" responses to lures).
To determine where the OM confidence criterion is placed,
one can use only those responses to lures that received a
confidence rating of probably old or greater. From these
responses, a new false alarm rate can be computed and the
location of the OM criterion can be estimated by converting 1
minus that false alarm rate into a z score (exactly as one
usually does for "old" responses that exceed the old-new
decision criterion). Although we did use this procedure as a

Table 1
Group Hit and False Alarm Rates From Experiments 1
and 2 ofRatcliffet at (1994)

Condition

Weak
Strong

Experiment 1

Hit FA

0.39 0.35
0.59 0.30

d

0.08
0.57

Hit

0.42
0.64

Experiment 2

FA d

0.31 0.26
0.25 0.97

check on our analyses, in practice, more precise estimates of
the confidence criteria locations were obtained using a
maximum likelihood analysis of the ROC curves that also
takes account of responses on target trials (rather than just
analyzing confidence-specific false alarms). A detailed de-
scription of the method we used is provided by Ogilvie and
Creelman (1968). This method simultaneously estimates the
placement of the various decision criteria (OH, OM, C, NM,
and NH), d (a discriminability measure similar to d'\ and r
(the standard deviation of the lure distribution relative to the
target distribution) using the logistic approximation of the
Gaussian distribution.1 The parameters r and d can be
thought of as the slope and intercept of the ROC plotted in
z-transformed coordinates. The r parameter is included
because prior research clearly shows that the target and lure
distributions in memory experiments do not have equal
standard deviations (Ratcliff et al., 1992). Note that all of the
criteria parameter estimates are scaled with respect to the
mean of the lure distribution (which is arbitrarily assigned a
value of 0).

Ratcliff et al. (1994) showed that the z-transformed ROC
data were essentially linear, indicating that the assumption
of Gaussian target and lure distributions is a reasonable one
(although other distributions can be found to fit these data as
well; Lockhart & Murdock, 1970). For all of the analyses
described later, the quality of fit (and the parameter esti-
mates) are virtually identical whether underlying Gaussian
or logistic distributions are assumed.2 The estimates we
present are based on the logistic approximation because they
are the same values produced by a commonly used program
called EPCROC (e.g., Ratcliff et al., 1994; see Ogilvie &
Creelman, 1968, for program).

Table 2 presents the maximum likelihood estimates of the
fitted parameters for the pure-strength manipulations in
Experiments 1 and 2 ofRatcliffet al. (1994), respectively.
An unsurprising finding is that, for both experiments, the
decision criterion, C, was estimated to lie at a higher point
on the decision axis in the strong condition than in the weak
condition. This merely reflects the higher false alarm rate in
the weak condition of both experiments. Of more interest
here is how the remaining confidence criteria shifted with
recognition accuracy. As shown in Table 2, the strength
manipulation produced a fan pattern that more or less
conforms to the predictions of the likelihood ratio model.
Thus, for example, in Experiment 1, OH was estimated to lie
1.52 standard deviations above the mean of the lure distribu-
tion in the strong condition and 1.64 standard deviations
above the mean of the lure distribution in the weak condition

Note. Hit = mean hit rate; FA - false alarm rate; d —
discriminability.

1 The d parameter in these fits is equal to 0.61 times d*, where d*
is the intercept of the linearized ROC, assuming logistic distribu-
tions (Ogilvie & Creelman, 1968). The multiplying factor gives a
close approximation of the value that would be obtained assuming
Gaussian distributions. The confidence criteria were also multi-
plied by 0.61 for the same reason.

2 The Gaussian fits were performed by replacing the equation for
the cumulative logistic with an extremely close approximation of
the cumulative Gaussian. That approximation is given by Equation
26.2.17 in Abramowitz and Stegun (1965).
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Table 2
Group ROC Parameter Estimates From Experiments 1 and 2 ofRatcliffet al. (1994)

Confidence
criterion

Experiment 1 Experiment 2
Weak

1.64
0.97
0.38

-0.33
-1.40

Strong

1.52
0.94
0.52
0.00

-0.91

Difference

+0.12
+0.03
-0.14
-0.33
-0.49

Weak

1.58
0.94
0.48

-0.41
-1.62

Strong

1.60
1.05
0.67
0.03

-0.80

Difference

-0.02
-0.11
-0.19
-0.44
-0.82

Note. ROC = receiver operating characteristic; O - old; H = high; M = medium; C = decision
criteria; N — new.

(a difference of +0.12, strong to weak). That is, participants
actually required a higher level of familiarity before giving a
high-confident "old*' response in the weak condition. The
decision criterion, C, moved in the opposite direction from
0.52 to 0.38 (a difference of -0.14), and the NH criterion
moved in the negative direction more than that, from —0.91
to —1.40 (a difference of —0.49). The pattern was much the
same in Experiment 2. These difference scores are consistent
with the fan pattern predicted by the likelihood ratio model
(lower panel of Figure 3).

To see whether this apparent fan pattern differs signifi-
cantly from a lockstep pattern, the data from each experi-
ment were fit twice, once allowing separate confidence
criteria estimates for the strong and weak conditions and
once again requiring that the criteria remain a fixed differ-
ence apart (that distance being represented by the parameter
A). For both fits, the d and r values for the strong and weak
conditions were fixed at the values obtained from the fits
described earlier. Note that the fit of the full model involved
10 free parameters (Off, OM, C, NM, and NH for the weak
condition and a similar set of parameters for the strong
condition), whereas the fit of the reduced model involved 6
free parameters (OH, OM> C, NM, NH, and A). For the latter fit,
the confidence criteria in the strong condition were con-
strained to differ from the corresponding criteria in the weak
condition by the same amount (A), but the parameters were
otherwise free to vary. The difference in the chi-square
goodness-of-fit between these two fits is itself distributed as
chi-square with 4 degrees of freedom. If the addition of the 4
extra parameters in the full model was gratuitous, the
expected difference in chi-square would be 4 (which would
not be significant). Instead, the chi-square value was 152.7
for Experiment 1 and 190.9 for Experiment 2, both of which
are highly significant. Thus, the null hypothesis of a lockstep
shift in the criteria can be rejected. The range model
described earlier can also be rejected because that model
requires that the criteria converge (rather than diverge) as
strength decreases.

The interpretation of the foregoing results depends on
several important assumptions. As indicated earlier, we
assume Gaussian (or logistic) distributions and a strength-of-
evidence decision axis. Even more important, we assume
that the parameters of the lure distribution in the weak
condition match the parameters of the lure distribution in the
strong condition. That is, we assume that the mean and

standard deviation of the lure distributions in the two
conditions are the same (assumptions hereinafter symbol-
ized as uWcak = |istr?ng and crWeak = o-Strong). The assumption
that <rWeak = o-Strong is especially critical because the location
of the confidence criteria in the strong and weak conditions
are scaled in units equal to the standard deviation of their
respective lure distributions. If the standard deviations of the
two lure distributions are not equal, then the two sets of
estimates cannot be directly compared (it would be like
comparing one set of lengths measured in inches with
another set of lengths measured in centimeters).

The idea that the strong and weak lure distributions have
the same standard deviations is intuitively plausible because
the items are physically identical, on average. That is, in
both cases, the lures are simply words that did not appear on
the list that were drawn randomly from the word pool. This
assumption also has some theoretical justification. Specifi-
cally, Search of Associative Memory (SAM) assumes that
strength manipulations do not affect the characteristics of the
lure distribution. Shiffrin, Huber, and Marinelli (1995)
recently presented empirical evidence in support of this
assumption by showing that when steps are taken to prevent
criterion shifts, strengthening target items does not affect the
false alarm rate (as it should if that manipulation affected the
familiarity characteristics of the lures). Thus, although the
preceding analysis depends on a fairly strong assumption,
that assumption can be made with some justification.

The parameter estimates just analyzed were based on
responses to both targets and lures (i.e., on both hit and false
alarm rates). It could be argued that the inclusion of targets
in the analysis creates distortions because of the possible
role for all-or-none retrieval processes in recognition memory
(e.g., Gardiner & Java, 1990). Because a continuous strength-
of-evidence axis was assumed in the preceding analyses, the
presence of all-or-none retrieval of some of the targets
during recognition testing could complicate the analysis in
unknown ways. However, as indicated earlier, estimates of
where the various criteria are located can also be obtained by
using the confidence-specific false alarm rates rather than
the maximum likelihood procedure described earlier. Thus,
for example, if 2.5% of the lures received a high-confident
"old" response (i.e., sure old), then the location of the OH

confidence criterion would be 2 standard deviations above
the mean of the lure distribution (because that location
would leave 2.5% of the lure distribution to the right of the
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OHcriterion). This value is arrived at by converting 1 — .025
to a z score. For all of the data considered here, the z score
estimates of the locations of the confidence criteria are very
similar to those obtained from the full maximum likelihood
analysis, and the fan effect predicted by the likelihood ratio
account is still plainly apparent. Note that this is true even
though the analysis excluded targets from the analysis
altogether. Thus, if some of the target items were retrieved in
an all-or-none fashion during recognition testing, that fact
apparently did not appreciably distort the maximum likeli-
hood parameter estimates.

Unequal Variance

The predictions of the likelihood ratio model were made
on the basis of an equal variance model, but as indicated
earlier, ROC analyses of recognition memory data almost
always suggest that the variance of the target distribution is
greater than that of the lure distribution (i.e., r is less than 1).
Predictions of the likelihood ratio model in the unequal
variance case are much less straightforward than in the equal
variance case because, for most likelihood ratios, no unique
solution exists. For example (and as described in more detail
in the Appendix), if r is less than 1, then to maintain any
particular Likelihood ratio greater than 1, a confidence
criterion could be placed at either of two locations on the
familiarity axis. In addition, some likelihood ratios of less
than 1 do not exist because the unequal variances (specifi-
cally, the greater target distribution variance) places a
constraint greater than zero on the lowest possible likelihood
ratio. In the equal variance case, by contrast, any likelihood
ratio from zero to infinity is possible, and every particular
likelihood ratio corresponds to a single point on the familiar-
ity axis. For these reasons, the idea that participants base
likelihood ratio decisions on an unequal variance model
seems implausible.

The simplest way out of this apparent dilemma is to
assume an equal-variance likelihood ratio model even
though the slope of the ROC is typically less than 1. Indeed,
Yonelinas (1994) explicitly endorsed this assumption and
argued that the slope of the ROC is less than 1 not because of
unequal variances (as is usually assumed) but because of the
contribution of all-or-none retrieval processes. If the target
and lure distribution variances are equal in spite of the fact
that r is less than 1, then responding on the basis of
likelihood ratios seems more plausible. An alternative
possibility is that the variances are indeed unequal and that
the criteria fan out for reasons having nothing to do with an
actual likelihood ratio computation. For example, perhaps
participants have simply learned on the basis of everyday
experience that more stringent confidence criteria settings
are required when memory conditions change for the worse
(otherwise high-confident errors would increase). Such
experience might not train participants to maintain constant
likelihood ratios exactly, but it might teach them to behave
more or less in accordance with what a computational
likelihood ratio model would predict.

The results shown in Table 2 suggest that the confidence
criteria fan out on the decision axis, at least to some extent,

as d' decreases. However, one possible concern about these
experiments is that all of the analyses were based on group
data. Perhaps the apparent likelihood ratio fan is an artifact
of averaging over participants. The data from Experiment 3
of Ratcliff et al. (1994) can be used to test the same idea
using single-participant analyses. We also analyze single-
participant data from an experiment that we performed. This
new experiment involved a much greater manipulation of
strength than that reported by Ratcliff et al. (1994) and
yielded somewhat more definitive results.

Single-Subject Analyses: Experiment 3 of Ratcliff
et al. (1994) and New Data

In Ratcliff et al/s (1994) Experiment 3, seven participants
were tested for up to 10 sessions each so that individual
ROC analyses could be performed. Participants in this
experiment studied lists of 16, 32, or 64 items, and the items
were presented at a 1-s rate in the pure weak condition and at
a 3-s rate in the pure strong condition. Each list was followed
by a yes-no recognition test, and confidence ratings were
measured on a 6-point scale as before. We collapsed across
the list length manipulation for the analyses described later.

ROC analyses were performed as described earlier, but
each participant's data were analyzed separately. That is, for
each participant, the maximum likelihood estimation proce-
dure yielded an estimate of d, r, and five criteria {O& OMi C,
NM, and NM). Table 3 shows the average parameter estimates
obtained from the individual participant fits. As in the
previous analyses, it appears that the criteria do not move in
lockstep, nor do they converge. Instead, they diverge as
predicted by the likelihood ratio model. That is, although the
criterion, C, shifted left from 0.79 to 0.56 standard deviation
units above the mean of the lure distribution (strong to
weak), NH shifted to a greater degree and OH actually moved
slightly in the opposite direction. A repeated measures
analysis of variance (ANOVA) performed on the individual
participant parameter estimates revealed a marginally signifi-
cant main effect of strength, F(l , 6) = 4.79, MSE = 0.168,
p = .071; a main effect of level of confidence, F(4, 24) =
48.0, MSE — 0.219,/? < .05; and (most important for present
purposes) a just barely significant interaction between those
two factors, F(4,24) = 2.80, MSE = 0.026, p < .05.

Table 4 shows the difference scores for the five confidence
criteria and for the discriminability parameter for each

Table 3
Mean of Individual-Participant Parameter Estimates From
Experiment 3 of Ratcliff et al. (1994)

Confidence
criterion

OH
OM

C

NH

Weak

1.77
1.02
0.56
0.09

-0.71

Strong

1.76
1.20
0.79
0.38

-0.33

Difference

+0.01
-0.18
-0.23
-0.29
-0.38

Note. O — old; H = high; M = medium; C = decision criterion;
N = new.
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Table 4
Difference Scores (Weak-Strong) for Individual-Participant
Parameter Estimates From Experiment 3
ofRatcliffetal(1994)

Parameter
estimate 1

Participant

+0.07 +0.06 -0.05 -0.13 -0.07 -0.02 +0.19
OMW-OHS -0-39 -0.29 -0.04 -0.23 -0.12 -0.11 +0.06
Cw-Cs -0.82 -0.20 +0.02 -0.25 -0.10 -0.15 -0.11

-1.15 -0.29 +0.01 -0.30 -0.10 -0.09 -0.13
-1.54 -0.38 +0.01 -0.40 -0.08 -0.07 -0.20
-1.59 -0.90 -0.21 -0.71 -0.31 -0.41 -0.40

Note. O = old; H = high; W ~ weak; S = strong; M = medium;
C — decision criterion; N = new; d = discriminability.

participant (weak minus strong). Of the 7 individual partici-
pants, 4 showed evidence of a fan effect (Participants 1,2,4,
and 7) and 3 did not. The 4 participants exhibiting a fan all
performed at least moderately better in the strong condition
than the weak (i.e., the strength manipulation had the desired
effect on performance). The participant whose performance
was affected the most by the strength manipulation (Partici-
pant 1) also showed the most robust fan effect (by far). Of
the 3 participants who did not exhibit a fan, 2 showed only
slightly better performance in the strong condition than in
the weak condition (Participants 3 and 5), so their data were
not particularly helpful in distinguishing between the vari-
ous models. The third participant's performance (Participant
6) showed a moderate strength effect, but the shifts in the
confidence criteria showed no clear pattern. Thus, although
some variability is apparent, on balance, these data support
the predictions of the likelihood ratio model. However, for
the effect to be clearly observed, it seems that strength
must be substantially manipulated so that the decision
criterion and the remaining confidence criteria shift enough
to detect it.

This issue accounts for why the remaining studies re-
ported by Ratcliff et al. (1994) are not analyzed here.
Experiments 4 and 5 both involved relatively small manipu-
lations of strength and little or no shift in the location of the
decision criterion as a function of strength. This can be seen
by examining the false alarm rates in the pure weak and pure
strong conditions of those experiments. In Experiment 4, for
example, they differed by less than one percent. In Experi-
ment 5, they differed by only about 1.6%, and in Experiment
6 they differed by less than 3%. This contrasts with the
results from the first three experiments, which showed
differences in the false alarm rates of 5% or more.

One possible concern about the experiments we did
choose to analyze (i.e., Experiments 1 through 3) is that
participants were given fairly detailed instructions on how
they should use the 6-point confidence scale. More specifi-
cally, in these experiments participants were instructed to
distribute their responses evenly over all of the confidence
categories. In addition, in Experiment 3, participants were
given feedback at the end of each list concerning the number
of responses they made in each confidence category. These
instructions were reasonable in the context of that experi-

ment because they were designed to ensure a more complete
description of the ROC. However, for the question we are
asking (namely, How do the confidence criteria shift as a
function of strength?), these instructions may not have been
optimal. That is, conceivably, the significant deviations from
the lockstep model resulted from participants' attempts to
comply with experimenter instructions concerning the use of
the confidence scale, not because of their inherent decision
making processes. Although it is easier for us to imagine
how such instructions might (if anything) attenuate a fan
effect, the question is an empirical one: Would the fan effect
be observed if participants were permitted to use the
confidence scale as they see fit? We now report the results of
a study designed to answer that question. In this experiment,
participants were tested for two sessions each. One session
involved four strong lists (with each item presented three
times), and another session involved four weak lists (with
each item presented only once). Confidence-based ROC
analyses were performed separately for each participant.

Method

Participants. The participants were 18 undergraduates of the
University of California, San Diego, who were enrolled in a lower
division psychology course. Participation in the experiment satis-
fied a course requirement.

Materials and design. The word pool consisted of 576 words
drawn from Nelson, McEvoy, and Schreiber (1994), of which 288
were LF (0 to 3 occurrences per million) and 288 were HF (40
occurrences or more per million). A nonoverlapping pool of
mixed-frequency words was compiled from the KuCera and Francis
(1967) norms for use in a distractor task.

Procedure. Participants were tested individually and were
presented with a list of words in one of two encoding conditions
that occurred separately in two sessions 1 week apart. A random
half of the participants received the weak encoding condition first
(Session 1) and the strong encoding condition second (Session 2),
and the other half received them in the reverse order. Participants
studied four 36-item lists in each session, and each list was
followed by a yes-no recognition test. The lists were constructed
by randomly drawing words from the word pool without replace-
ment. In the weak encoding condition, list items were presented
one at a time for 500 ms each, with an interstimulus interval (ISI) of
250 ms. The strong encoding condition was the same except that
the target words were presented three times each, with each
presentation occurring randomly throughout the list. Participants
were instructed to read each word aloud as it appeared on the
screen.

After a list was presented, participants were given a 20-s
distractor task in which words from the distractor pool were
presented at the center of the screen, one at a time for 500 ms with
an ISI of 500 ms, spelled backwards. Participants were instructed to
read the words as they would be pronounced if spelled in the
correct, forward order.

Immediately after the distractor task, participants were given a
yes-no recognition test. The recognition test consisted of the 36
targets randomly intermixed with 36 additional words randomly
drawn from the word pool (without replacement). Participants were
informed that they would be asked to make a remember-know
judgment for each yes response (although these were not relevant
to the present analysis) and to make a confidence rating on a 1 to 5
scale (complete guess to absolutely certain) for each response. For
consistency with the preceding analyses, we label the criteria
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associated with a high-confident yes response OH (this corresponds
to a yes-5), a medium-confident yes response OM (this corresponds
to a yes-3), and high- and medium-confident no responses NH and
NM, respectively.

Participants were encouraged to respond quickly to keep them
engaged in the task. If they took longer than their mean reaction
time on a preliminary test (plus 600 ms) to make their "yes" or
"no" response, the computer beeped and a message was displayed
requesting a faster decision on the next trial. Because participants
were encouraged to respond quickly, if they thought they had
mistakenly clicked the wrong mouse button, they were allowed to
change their initial yes-no response before giving confidence
ratings.

Results and Discussion

As expected, a typical mirror effect was observed. The hit
rate in the weak condition was less than that of the strong
condition (0.62 and 0.81, respectively), whereas the false
alarm rate in the weak condition was considerably greater
than that of the strong condition (0.28 and 0.12, respec-
tively). ROC analyses were performed as described earlier,
but each participant's data were analyzed separately. That is,
for each participant, the maximum likelihood estimation
procedure yielded an estimate of d, r, and three criteria (OH,
C, and NH). A few participants never expressed high
confidence in a response. For them, the next closest criterion
(e.g., NL or OM) was estimated.

The strength manipulation had the expected effect on d
(0.93 for the weak condition and 2.09 for the strong
condition). Fifteen of the 18 participants produced values of
r that were similar in the weak and strong conditions,
although for most participants the value of r in the weak
condition was slightly greater than that in the strong
condition (mean r values of 0.79 and 0.70 in the weak and
strong conditions, respectively, for those 15 participants).
For 3 participants, however, the r values in the two
conditions differed by more than 2 to 1. One of these
participants exhibited a dramatic lockstep pattern, 1 showed
no clear pattern, and 1 showed a reverse fan (the pattern
predicted by the range model). Thus, both in terms of the r
parameter and the criteria-shift pattern, these 3 participants
appeared to differ from the remaining 15. The average
parameter estimates for Ow, C, and NH obtained from the
individual participant fits, excluding the 3 participants with
very different r values, are given below. As in the previous
analyses, it is clear that the criteria do not move in lockstep,
nor do they converge. Instead, as predicted by the likelihood
ratio account, the criteria diverge. OH changes by —0.02
standard deviation units (from strong to weak) (from 2.47 to
2.45), the old-new decision criterion moves —0.48 standard
deviation units (from 1.09 to 0.61), and NH shifts -1.15
standard deviation units (from —0.63 to —1.78). A repeated
measures ANOVA performed on the individual-participant
parameter estimates revealed a main effect of strength, F(l ,
14) = 42.7, MSE = 0.157, p < .05; a main effect of level of
confidence (i.e., OH vs. C vs. Ay, F(2, 28) = 79.7, MSE =
1.27, p < .05; and (most important for present purposes), a
significant interaction between those two factors, F(2,28) =
14.4, MSE = 0.167, p < .05. Including the three outliers

does not alter the fact that a fan is observed or the fact that
the interaction is highly significant. All that changes is the
appearance of the fan: OH, instead of remaining more or less
fixed, shifts by -0.29 standard deviation units, the criterion
by -0.64 units, and A/̂  by -1.21 units.

General Discussion

The present analyses were designed to measure how
confidence criteria that are theoretically situated along the
signal-detection decision axis shift between conditions that
produce different levels of recognition accuracy. The results
suggest that these criteria fan out on the evidence axis when
strength is manipulated (strong to weak), a finding uniquely
predicted by the likelihood ratio model. However, this result
should not be taken to imply that participants precisely
maintain constant likelihood ratios for each confidence
criterion across all conditions. In general, although the
criteria do fan out in the weak condition as the likelihood
ratio model predicts, they do not fan out as much as they
should. This is most easily seen by examining the parameter
estimates associated with the data taken from the weak
condition in Experiment 1 of Ratcliff et al. (1994). Accord-
ing to Equations 1 and 2, as d' approaches 0, the criteria
should fan out infinitely far. Although d' was indeed near 0
in the weak condition of that experiment, the criteria did not
fan out to an extreme degree. Thus, the results reported here
are qualitatively (but not quantitatively) consistent with the
predictions of the likelihood ratio account.

The conclusion that the criteria fan out on the decision
axis as d' decreases depends on the assumption that the
parameters of the lure distributions were the same in both
conditions. Because the lures in the strong condition were
physically identical to the lures in the weak condition (i.e., in
both cases they consisted of new words randomly drawn
from the word pool), this assumption seems reasonable.
However, because this assumption is critical, we turn now to
a detailed discussion of that issue.

Strong and Weak Lure Distributions

Although the lures in the strong and weak conditions were
equivalent in every physical respect (on average), it is
theoretically possible that their psychological strength char-
acteristics changed depending on the strength of the targets.
If so, the interpretation of the results presented earlier would
need to be modified. Empirical evidence bearing on this
assumption was recently provided by Shiffrin et al. (1995).
In that experiment, participants studied a single long list of
words composed of items drawn from many different
semantic and orthographic categories (21 categories in all).
The various categories differed in length (i.e., number of
exemplars drawn from a category) and strength (number of
exemplar presentations). The unprovable but seemingly
reasonable assumption was that with so many different
categories, participants would adopt a single decision crite-
rion and use it throughout (rather than adopting a different
decision criterion for each of the 21 categories). Given that
assumption, any change in the category-specific false alarm
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rate as a function of category strength or category length
could be attributed to changes in the properties of the lure
distribution.

The results of this experiment were consistent with the
predictions of SAM and with a central assumption made
here. That is, although the hit rate increased with category
strength (obviously), the false alarm rate was unaffected by
that manipulation (a finding also reported by Stretch &
Wixted, 1998). Note that if category strength affected either
the mean or the variance of the lure distribution, the false
alarm rate should have changed (assuming a fixed decision
criterion). Because the false alarm rate did not change as a
function of strength, the results suggest that the familiarity
characteristics of the lures remain constant over variations in
strength. If so, and if the same is true here, then the fan effect
observed for the strength manipulation is a real effect rather
than an illusion created by the effect of target strength on the
standard deviation of the lure distribution.

Prior Research on Strength and Confidence

Only one previous study has directly addressed the issue
under investigation here. Balakrishnan and Ratcliff (1996)
recently found that for a strength manipulation the lockstep
model (which they termed the "distance from criterion"
model) provided a better account of their data than the
likelihood ratio model. Their method of analysis differed
considerably from the one used here. Instead of assuming
underlying Gaussian distributions and estimating the loca-
tions of the various confidence criteria in the strong and
weak conditions as we did, they compared cumulative
frequency distributions for 10 levels of confidence. If
participants shift their criteria in lockstep as strength is
manipulated, and if the variances of the strong and weak lure
distributions are the same, then the cumulative frequency
distribution should simply shift to the left or right, depend-
ing on which way the criteria are moved. This prediction
holds true even if the underlying strength distributions are
not Gaussian in form. If participants instead shift their
criteria in such a way as to maintain constant likelihood
ratios (i.e., if participants behave as ideal observers), then
the two cumulative frequency distributions should intersect.
The data reported by Balakrishnan and Ratcliff were visually
more in line with the predictions of the lockstep model.

Balakrishnan and Ratcliff (1996) compared the predic-
tions of the lockstep model versus an idealized likelihood
ratio model, whereas we tested for statistically significant
deviations (however small) from the lockstep pattern. Our
findings suggest that although the deviations from the
lockstep model may not be as extreme as they should be,
they are significant and are in the direction predicted by the
likelihood ratio account. Thus, Balakrishnan and Ratcliff s
results showing that the data do not convincingly rule out the
lockstep model are not entirely inconsistent with the results
presented here. The lockstep model may provide a reason-
able approximation of the data, but if one is willing to
assume underlying Gaussian or logistic distributions (thereby
adding power to the analysis), the deviations from that
model are statistically significant and are in the direction

predicted by the likelihood ratio account (which is not to say
that participants were behaving as ideal observers).

Unequal Variances and the Likelihood Ratio
Decision Rule

The predictions of the likelihood ratio model shown in the
lower panel of Figure 3 and represented by Equations 1 and
2 were derived from the assumption of equal target and lure
distribution variances. When those variances are not equal
and the distributions are Gaussian in form, responding on the
basis of a likelihood ratio seems peculiar because no unique
solution exists. For example, a likelihood ratio of 1 occurs at
the point of intersection between the two distributions
(because that is the point where the height of the target
distribution equals the height of the lure distribution). For
the equal variance case, the distributions intersect at only a
single point. Thus, setting the criterion at the point where the
likelihood ratio is 1 poses no dilemma. For the unequal
variance case, the distributions intersect in two places. As a
result, participants who choose to set their decision criterion
on the familiarity axis at the point where the likelihood ratio
is 1 would have two options. As described in more detail in
the Appendix, similar difficulties arise for ratios other than 1.
Thus, given Gaussian distributions with unequal variances,
the predictions of the likelihood ratio model are ambiguous.
Nevertheless, in spite of the fact that the target and lure
distributions have unequal variances (given that r is usually
less than 1), participants appear to shift their confidence
criteria in approximate accordance with the predictions
made by the equal-variance likelihood ratio model.

The fact that participants do not shift their confidence
criteria to the degree that they should already suggests that
they might not be engaging in an actual likelihood ratio
computation. If not, then the unequal target and lure
distribution variances may not pose a dilemma. For ex-
ample, perhaps participants adjust their criteria in the
manner that they do merely because that strategy has proven
to be effective in everyday life. If one is at all sensitive to
feedback, one should learn that when memory conditions are
unfavorable, more extreme criteria settings should be used
before expressing high confidence in a recognition decision.
Failure to follow that strategy (as one may have learned
through painful experience) too often results in high-
confident responses being wrong. According to this idea,
experience with the likelihood of being correct under
various memory conditions, not a likelihood ratio computa-
tion, accounts for the pattern of results reported here.
However, experience might not be so effective a teacher as
to train participants to behave as ideal observers, and that
might explain why the criteria do not fan out as far as they
should.

On the other hand, if participants do engage in a
likelihood ratio computation after all, there may be other
ways around the unequal variance problem. As indicated
earlier, one possible explanation is to assume that the equal
variance model is correct in spite of the fact that the slope of
the ROC (r) is less than 1. Yonelinas (1994), for example,
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suggested that the target and lure distribution variances may
indeed be equal and that r deviates from 1 because some
recognition responses are based on all-or-none retrieval
processes. If so, then participants might be able to place their
confidence criteria along the familiarity axis according to an
equal-variance likelihood ratio model after all. Of course,
even this idea would not explain why participants do not
shift their criteria in exact accordance with the predictions of
a likelihood ratio model. Thus, if one assumes that partici-
pants are responding on the basis of an equal variance
computation, one must further assume that some inaccura-
cies creep into the computations. Thus, for example, when
d' is close to zero, perhaps participants mistakenly believe
that it is significantly greater than zero (thereby explaining
why the criteria do not fan out as much as they should).

Another way to avoid the dilemma of an unequal-variance
likelihood ratio without introducing all-or-none retrieval
processes is to assume that the underlying distributions are
not Gaussian in form after all. Indeed, one unusual implica-
tion of the unequal-variance Gaussian model is that items
with extremely low levels of familiarity are more likely to be
targets than lures. Intuition suggests that it should be the
other way around. Although some mechanism may be able
to account for that curious possibility, it seems simpler to
assume that the target distribution is at all points (including
in the left tail) situated to the right of the lure distribution. A
number of other distributions, such as the binomial distribu-
tions assumed by Glanzer et al. (1993) and the positively
skewed distributions generated by a new theory of memory
proposed by Shiffrin and Steyvers (1997), have this prop-
erty. These distributions are bounded at zero (which in itself
makes more sense than a Gaussian distribution that extends
to minus infinity) and can describe distributions with
unequal variances that nevertheless exhibit a continuously
increasing likelihood ratio function as strength of evidence
increases (which is another way of saying that the distribu-
tions intersect only once).

Unfortunately, if the underlying distributions are not
Gaussian (or Gaussian-like), then the estimates of the
locations of the confidence criteria presented earlier may not
be valid. What can be said of the present findings under
those conditions? One pattern sometimes observed in the
relevant data still suggests a fan even if one makes much
weaker assumptions about the shape of the underlying
distributions. An example of this pattern was observed in the
data from Experiment 1 of Ratcliff et al. (1994). In that
experiment, the overall false alarm rate increased from
strong to weak (from 0.30 to 0.35, as shown in Table 1), but
the high-confident false alarm rate actually decreased slightly
(from 0.07 to 0.06). The same pattern was also observed in
the data of Participants 1, 2, and 7 from Experiment 3 of
Ratcliff et al. (1994). Regardless of the shape of the
underlying lure distribution, this could occur only if C
shifted to the left (thereby increasing the overall false alarm
rate) and OH shifted to the right (thereby decreasing the
high-confident false alarm rate). When this pattern is not
observed, though (as in their Experiment 2), assumptions
about the shape of the underlying distributions are critical.

Glanzer's Attention Likelihood Theory

The analyses discussed to this point have all assumed a
strength-of-evidence decision axis because that is a common
and intuitively appealing assumption. Nevertheless, it is
possible that the decision axis does not represent strength of
evidence but instead represents a likelihood ratio scale.
According to this idea, participants compute likelihood
ratios from a strength variable as described earlier, but now
the likelihood ratio itself is the operative psychological
variable. Thus, the target and lure distributions no longer
represent distributions of familiarity values but instead
represent distributions of log likelihood ratios. Similarly, a
single point on the decision axis no longer represents a
familiarity value but instead represents a specific likelihood
ratio. Glanzer's attention likelihood theory (ALT) explicitly
assumes a likelihood ratio decision axis (Glanzer et al.,
1993) and in doing so explicitly endorses the view that
participants know the forms of the relevant strength distribu-
tions (binomial in their model) and can compute likelihood
ratios from them. A new model of recognition memory
proposed by Shifrrin and Steyvers (1997) also assumes a
likelihood ratio decision axis.

If the decision axis represents a strength-of-evidence
variable (such as familiarity), then to maintain constant
likelihood ratios across conditions the confidence criteria
must fan out as indicated in the lower panel of Figure 3. If
the decision axis represents a log likelihood ratio scale, by
contrast, then to maintain constant likelihood ratios across
conditions the criteria must remain fixed (movement would
imply a changing likelihood ratio). Furthermore, the vari-
ances of the target and lure distributions must both decrease
as conditions change from strong to weak. Why, then, do the
criteria appear to fan out in the data reported here? Because,
according to ALT, the lure distribution in the weak condition
is less variable than the corresponding strong distribution
(i.e., CTweak < Ŝtrong)- If so, then a central assumption of the
preceding analysis is violated, and an apparent fan effect
would be observed. As indicated earlier, the location of the
confidence criteria are measured in units equal to the
standard deviation of the lure distribution. If that value were
greater in the strong condition than in the weak condition,
then the confidence criteria in the strong condition would
appear to be less distant from the mean of the strong lure
distribution than the corresponding confidence criteria in the
weak condition. Hence, the illusion of a fan effect. Thus, the
findings reported here in favor of a fan effect are equally
consistent with the idea that the criteria remain fixed across
conditions and that o"weak < o"strong (which is what a
likelihood ratio decision-axis model would require).

The results of the study performed by Shifrrin et al.
(1995), which showed that the false alarm rates for strong
and weak categories were the same for a within-list strength
manipulation, appear to suggest that the characteristics of
the lure distribution do not vary as a function of the strength
of the targets. That is, assuming a fixed decision criterion,
the equivalent false alarm rates across conditions suggest
that <rWeak = o-StnMlg. However, because so many categories
were used, participants presumably did not know whether
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the category from which a particular lure was drawn was
strong or weak. Under these conditions, they could not
compute strength-specific likelihood ratios even if they
wanted to. Instead, they would be forced to generate a
generic likelihood ratio (based, perhaps, on a theoretical
target distribution the mean of which was the average of the
various strong and weak conditions). Under those condi-
tions, only one lure distribution would exist (rather than a
strong lure distribution and a weak lure distribution), and the
false alarm rate would not be expected to change as a
function of category strength. Thus, even Glanzer's model
predicts that for the procedure used by Shiffrin et al. (1995)
the characteristics of the lure distribution should not change
as a function of strength. In a pure-strength manipulation
(like those examined here), by contrast, participants would
be able to form strength-specific likelihood ratios for the
lures. Under those conditions, the characteristics of the lure
distribution would change, with the variance of the strong
lure distribution being greater than that of the weak lure
distribution (and an apparent fan effect would be observed).

On the other hand, Stretch and Wixted (1998) recently
reported a study like that reported by Shiffrin et al. (1995),
except that only two perceptual categories were used. In this
study, strong items (which received extra study) were
presented in one color, such as red, and weak items in
another color, such as green. On the subsequent recognition
test, the strong-red and weak-green targets were randomly
intermixed with an equal number of red and green lures for a
yes-no recognition test. Under these conditions participants
should be able to easily form strength-specific likelihood
ratios just as they might do for a between-list strength
manipulation. As with Shiffrin et al. (1995), however, the
false alarm rates to red and green lures were nearly identical.
One simple explanation for this result is that the decision
axis does indeed represent a strength-of-evidence variable
(like familiarity) and that participants prefer to use a single
decision criterion throughout the course of a recognition test
(rather than alternating between different settings, depend-
ing on whether the test item is red or green). This finding is
less easily explained by a likelihood ratio model. If partici-
pants ordinarily compute likelihood ratios for each item
anyway, why would they ignore color information that
accurately indicates whether the corresponding target distri-
bution is strong or weak?

In any case, the results of the between-list strength
analysis reported here are consistent with the predictions of
Glanzer's theory even if the results of the within-list strength
analysis reported by Stretch and Wixted (1998) are not.
Interpreted in terms of ALT, the findings reported here
suggest that for a strength manipulation the variance of the
lure distribution in the weaker condition is less than the
variance of the lure distribution in the stronger condition
(assuming one is prepared to accept the possibility that the
decision axis represents a log likelihood ratio scale). This is
basically the same finding that Glanzer and Adams (1990)
reported with respect to a word frequency manipulation.

Conclusion

The main conclusion to be drawn from the present
research is the following: If the decision axis is assumed to
represent a strength-of-evidence variable such as familiarity,
then for strength manipulations the confidence criteria fan
out as recognition accuracy decreases (rather than converg-
ing or shifting in lockstep). This is qualitatively what a
likelihood ratio model predicts, but the criteria did not fan
out as much as they should have. If one instead assumes a
likelihood ratio decision axis, as Glanzer does, then the
results presented here suggest that the variance of the weak
lure distribution is less than that of the strong lure distribu-
tion (in accordance with the predictions of ALT).
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Appendix

Computing Likelihood Ratios for the Unequal-Variance Gaussian Model

The equation for the signal distribution with mean d' and
standard deviation s is given by

(Al)

and the equation for the lure distribution with mean 0 and standard
deviation 1 is given by

can be rearranged in the form of a quadratic:

iV(0,1) = (A2)

The likelihood ratio at a particular point / o n the familiarity axis is
given by the ratio of these two equations:

L = (A3)

which reduces to

where r — Vs. Taking the log of both sides yields

log(Z,) = log(r) - 0 . 5 ^ ( / - d')2+ 0.5/2

or, after squaring,

log(L) = log(r) - Q.5r*{p - 2fd' + d'2) + 0.5/2. (A5)

By subtracting log(L) from both sides of the equation, Equation A5

where a = -0.5(7* - 1), b = d'r2, and c = log(r) - 0.5A*'2 -

To solve for a value of/that satisfies the particular likelihood
ratio, L, the standard quadratic formula may be used:

f=(-b± - 4ac)/2a.

When the foregoing values for a, b, and c are substituted into this
equation, it eventually reduces to this rather forbidding-looking
expression:

/= {d'r*±yj(d'r2f-{r2 ~ \)[{d'rf - 21og(/7L)])/(r2 - 1 ) . (A6)

To compute where on the familiarity axis a confidence criterion
should be placed to maintain a given likelihood ratio, one need only
substitute the relevant values and solve the quadratic. For example,
assume that in the strong condition, d' = 2.5, r = .80, and OH = 2.0
(which means that the familiarity value, /, corresponding to the
high-confidence "old" criterion is at 2.0 on the familiarity axis).
According to Equation A4, the likelihood ratio associated with this
confidence criterion is 5.46, which is to say that any item that is
5.46 or more times as likely to have come from the target
distribution than the lure distribution receives a "yes" response
with high confidence. Now assume that in the weak condition d' =
1.0 and r = 0.90. Where should On be placed in order to keep the
same likelihood ratio of 5.46? To find the answer, simply substitute
these values for d', r, and L in Equation A6. In this example, two
possible values of /a re returned: 2.17 and —10.70. Thus, in the
weaker condition (with d' = 1), the high-confident "old" criterion
could be placed at either location in order to maintain a constant
likelihood ratio of 5.46. The fact that two solutions exist illustrates
one of the peculiarities that arises for an unequal variance

(Appendix continues on next page)
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likelihood ratio model. Usually, however, one of the solutions is an
extreme one, so one could perhaps assume that participants use the
less extreme solution (in this case, 2.17).

To illustrate a second peculiarity that can arise, assume that
NH = —1.0 in the same strong condition. According to Equation
A4, this criterion is associated with a likelihood ratio of 0.074,
Where should NH be placed to maintain that likelihood ratio in the
weak condition? It turns out that there is no setting on the
familiarity axis that will yield this likelihood ratio in the weak
condition. The minimum possible likelihood ratio that can be
obtained is 0.107, which occurs when the criterion is placed
at —4.26. One could perhaps assume that when faced with a
situation like this, participants place the criterion at the point that
comes closest to maintaining a constant likelihood ratio (in this
case, at -4.26).

With these caveats in mind, exact predictions for the preceding
experiments can be generated. Table Al provides an example from
Experiment 1 of Ratcliff et al. (1994). All of the predictions were
generated using actual d' values (the distance between the means of
the target and lure distributions in units equal to the standard
deviation of the lure distribution). This differs from the d values
shown in Table 1. The transformation is given by d' = d( 1 + r)l2r.
The likelihood ratios associated with the five criteria in the strong
condition were first computed using Equation A4, and then
predictions about where the various criteria should be placed in the
weak condition in order to maintain constant likelihood ratios were

Table Al
Exact Likelihood Ratio for Experiment I of Ratcliff
etal(1994)

Confidence
criterion

OH

oMC
NM
NH

Strong

1.52
0.94
0.52
0.00

-0.91

Likelihood
ratio

2.00
1.25
0.95
0.73
0.57

Weak
predicted

3.87
1.96

-0.28
-1.22a

-1.22 s

Weak
actual

1.64
1.07
1.03
0.95
0.93

Note. O — old; H = high; M = medium; C — decision criterion;
N = new.
"Indicates criterion placed at the minimum possible likelihood
ratio.

generated using Equation A6. Table Al presents the results and
shows that as conditions change from strong to weak, the criteria in
the weak condition should fan out. What is also clear is that in order
to maintain constant likelihood ratios, they should fan out consider-
ably more than they actully do.
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