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Useful scientific theories are useful:  
A reply to Rouder, Pratte, and Morey (2010)

John T. WixTed and Laura Mickes
University of California, San Diego, La Jolla, California

In a recognition memory experiment, Mickes, Wixted, and 
Wais (2007) reported that distributional statistics computed from 
ratings made using a 20-point confidence scale (which showed 
that the standard deviation of the ratings made to lures was ap-
proximately 0.80 times that of the targets) essentially matched the 
distributional statistics estimated indirectly by fitting a Gaussian 
signal-detection model to the receiver-operating characteristic 
(ROC). We argued that the parallel results serve to increase con-
fidence in the Gaussian unequal-variance model of recognition 
memory. Rouder, Pratte, and Morey (2010) argue that the results 
are instead uninformative. In their view, parametric models of 
latent memory strength are not empirically distinguishable. As 
such, they argue, our conclusions are arbitrary, and parametric 
ROC analysis should be abandoned. In an attempt to demonstrate 
the inherent untestability of parametric models, they describe a 
non-Gaussian equal-variance model that purportedly accounts 
for our findings just as well as the Gaussian unequal-variance 
model does. However, we show that their new model—despite 
being contrived after the fact and in full view of the to-be-
 explained data—does not account for the results as well as the 
unequal-variance Gaussian model does. This outcome manifestly 
demonstrates that parametric models are, in fact, testable. More-
over, the results differentially favor the Gaussian account over 
the probit model and over several other reasonable distributional 
forms (such as the Weibull and the lognormal).

Receiver-operating characteristic (ROC) data obtained 
from recognition memory experiments generally follow an 
asymmetrical curvilinear path when plotted in probability 
space and follow an approximately linear path with a slope 
of less than 1 when plotted in z space. These findings are 
interpreted by the Gaussian signal-detection model to mean 
that the memory strengths of the target items are more vari-
able than the memory strengths of the lures. More specifi-
cally, if the Gaussian model is correct, then the slope of 
the linear z-ROC provides an estimate of the ratio of the 
standard deviation of the lure distribution (σLure) divided 
by the standard deviation of the target distribution (σTarget). 
Typically, the slope of the z-ROC is close to 0.80 (Ratcliff, 
Sheu, & Gronlund, 1992). Thus, the standard deviation of 
the lure distribution is estimated by the Gaussian model 
to be approximately 0.8 times that of the target distribu-
tion (i.e., σLure / σTarget < 0.8). The idea that the memory 
strengths of targets and lures are normally distributed, with 
the mean and variance of the target distribution exceeding 
the mean and variance of the lure distribution, is known as 
the unequal-variance signal-detection model. This model 

has guided thinking about recognition memory for over 50 
years (beginning with Egan, 1958).

Mickes, Wixted, and Wais (2007) asked a simple ques-
tion: Would the same result—namely, a higher mean and 
variance of the memory strengths for the targets as com-
pared with the lures—be evident if one used a 20-point con-
fidence scale and then simply computed the relevant dis-
tributional statistics from the ratings themselves instead of 
estimating them by fitting a Gaussian model to ROC data? 
And if an unequal-variance model were suggested by the 
ratings data, would the magnitude of the estimated ratio of 
the standard deviations based on the ratings (sLure / sTarget) 
be similar to the magnitude of the estimated ratio obtained 
by fitting a Gaussian model to ROC data (σLure / σTarget)?

A priori, agreement between the two ratio estimates seems 
unlikely, because there are many reasons why they might 
disagree. For example, if the Gaussian assumption is not 
valid, then disagreement between the two estimates seems 
more likely than agreement. In addition, if the rating scale 
does not approximate an interval scale, or if it covers only 
a limited range of the memory strength dimension, then, 
again, disagreement seems more likely than agreement. 
Somewhat surprisingly, Mickes et al. (2007) found that the 
two estimates showed good agreement, even at the level of 
the individual participant. Both methods suggested that the 
memory strengths of the targets were more variable than the 
memory strengths of the lures, and both further suggested 
that the standard deviation ratio was, on average, approxi-
mately 0.80. The group data from their Experiment 1 illus-
trate the basic finding. The slope of the group z-ROC, which 
provides an estimate of σLure / σTarget if the Gaussian model 
is correct, was 0.833. The corresponding standard devia-
tion ratio computed directly from the ratings (sLure / sTarget) 
was 4.14 divided by 5.01, or 0.826. The computation of this 
standard deviation ratio does not involve any distributional 
assumptions, yet it was nearly identical to the ratio estimate 
provided by the Gaussian interpretation of the ROC.

From these results, Mickes et al. (2007) drew two basic 
conclusions:

1. The two experiments reported here support a con-
clusion that is commonly drawn from ROC analy-
sis—namely, that the memory strengths of the tar-
gets are more variable than the memory strengths of 
the lures. (p. 864)

2. The close agreement between the model-based ROC 
analysis and the model-free ratings method sup-
ports not only an unequal-variance model, but also 
the idea that the memory strengths are distributed 
in such a way that fitting a specifically Gaussian 
model to the data yields accurate conclusions (even 
if the true underlying distributions are not strictly 
Gaussian). (p. 864)
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characterizes ROC data, any monotonic transformation 
of the decision axis variable predicts the same observed 
data (e.g., ROC data that correspond to a likelihood ratio 
model also correspond to a log likelihood ratio model). 
To take another example used by Rouder et al. (2010), 
exponentiating Gaussian random variables yields a highly 
skewed distribution described by the lognormal. Despite 
its dramatically non-Gaussian form, the lognormal signal-
 detection model fits ROC data exactly as well as the Gauss-
ian model. Accordingly, the mere fact that the Gaussian 
model accurately describes ROC data cannot be taken to 
mean that the underlying memory strengths are Gaussian 
in form or that ratio statistics based on the Gaussian as-
sumption, such as the estimate of σLure / σTarget, are neces-
sarily valid (Egan, 1975). Similarly, as pointed out by oth-
ers, distributions that are not even related to the Gaussian 
can often accurately describe ROC data, and such distri-
butions invariably yield different estimates of the lure-to-
target standard deviation ratio than the estimate provided 
by the Gaussian model. Lockhart and Murdock (1970) 
went so far as to suggest that virtually any unimodal distri-
bution can yield ROC data that are largely indistinguish-
able from what the Gaussian model predicts.

Although these points have long been known, Rouder 
et al. (2010) reiterate them in their comment, and they go to 
considerable lengths to show that they are true. Their efforts 
serve as a useful reminder of the limitations of ROC analy-
sis, but they do not bear on the analysis that we performed, 
which was concerned with the congruence between ROC 
analysis and direct ratings (not with ROC analysis per se). 
Would any reasonable signal-detection model yield the 
same degree of congruence that was found for the Gauss-
ian unequal-variance signal-detection model? That is a key 
question, yet Rouder et al. do not consider it.

The most straightforward way to answer this question 
would be simply to fit various plausible signal-detection 
models to the ROC data and then separately ask how well 
those models describe the same ROC data when their pa-
rameters are constrained to equal the means and standard 
deviations computed directly from the ratings. We per-
formed just such an analysis for five different distribu-
tional forms (the Gaussian, the Weibull, the logistic, the 
lognormal, and the exponential). These distributions are 
shown in the left column of Figure 1, and all of them have 
been mentioned in connection with ROC analysis over the 
years. It is visually apparent that two of these distributions 
are Gaussian-like (the logistic and the Weibull), whereas 
the other two are very non-Gaussian (the lognormal and 
the exponential).

In the middle and right columns of Figure 1, we show 
the results of two different analyses that serve to test these 
models. The middle column shows the least squares group 
ROC fits for each of the five models. The ROC data are 
from Experiment 1 of Mickes et al. (2007), and they were 
obtained using a 20-point confidence rating scale ranging 
from 1 (sure new) to 20 (sure old), which yields a 19-point 
ROC. For each model, the relevant parameters were itera-
tively adjusted to achieve the best fit (as is typically done 
in ROC analysis). The parameter of most interest here is 
σLure / σTarget, and its estimated value for each model is 

Rouder, Pratte, and Morey (2010) argue that these results 
are instead uninformative because parametric models of 
latent memory strength are simply not testable. More 
specifically, although the results are compatible with the 
Gaussian model and with the idea that the variance of the 
target distribution is greater than the variance of the lure 
distribution, they are also compatible with different para-
metric models that yield different conclusions about the 
relative variances of the two distributions. Thus, in their 
view, the scientific method cannot shed any light on the 
parametric properties of latent memory strength, so para-
metric ROC analysis should be abandoned in favor of a 
nonparametric approach.

In making their case, Rouder et al. (2010) overlook 
a key question: Why did the Gaussian ROC estimate of 
σLure / σTarget and the direct rating estimate of sLure / sTarget 
agree when there are so many reasons why they might 
have disagreed? As we show next, signal-detection mod-
els based on a variety of common distributional forms dif-
fer in the degree to which the two estimates agree. The 
fact that the agreement between these two estimates is 
higher for the Gaussian model than for other reasonable 
distributional forms shows that (1) parametric models are 
testable and (2) the empirical results differentially support 
the Gaussian account.

The Gaussian model not only outperforms a variety of 
non-Gaussian models that have been mentioned in con-
nection with ROC analysis in the past, it also outperforms 
the new equal-variance signal-detection model that Rouder 
et al. (2010) contrived in an effort to demonstrate that para-
metric models of latent memory strength are not testable. 
That is, despite its being contrived after the fact and in full 
view of the to-be-explained data, we show that their new 
equal-variance model does not exhibit the degree of cor-
respondence between ROC analysis and ratings data that 
the Gaussian model exhibits (a model that was not con-
trived after the fact). Thus, Rouder et al. have not provided 
a mathematical proof that an alternative equal-variance 
non-Gaussian model can account for the data as well as an 
unequal-variance Gaussian model can. Instead, they have 
introduced a new signal-detection model—one that, like 
any new model, will stand or fall on the basis of its ability 
to parsimoniously account for the empirical data. The fact 
that their new model is empirically outperformed by the 
Gaussian unequal-variance signal-detection model further 
underscores the point that parametric models are, indeed, 
testable, and it provides additional evidence in favor of, not 
evidence against, the longstanding Gaussian account.

An Unlikely Coincidence
Before the fact, the Gaussian model predicted the ob-

served correspondence between ROC analysis and ratings 
data. The likelihood of that correspondence if the Gaussian 
model is wrong would seem to be fairly low, and the analy-
ses that we present below reinforce that suspicion. A basic 
tenet of scientific reasoning is that when a low- probability 
prediction survives empirical scrutiny, confidence in the 
theory that made that prediction should increase.

Green and Swets (1966) noted long ago that although 
a Gaussian signal-detection model often adequately 
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Figure 1. Left panels: An illustration of five signal-detection models based on different distributional forms. 
Middle panels: Least-squares fit (solid curve) of each signal-detection model to the 19-point group receiver-
operating characteristic (ROC) data reported by Mickes, Wixted, and Wais (2007). Also shown is the estimate of 
σLure / σTarget provided by each fitted model. Right panels: Predicted ROC (solid curve) from each signal-detection 
model with its parameters constrained to yield the mean and standard deviations computed directly from the 
ratings. That is, each model was constrained to yield d 5 1.19 (the distance between the means of the target and 
lure distributions in lure standard deviations, according to the ratings) and σLure / σTarget 5 0.83 (because, in the 
ratings, sLure / sTarget 5 0.83). The data in the right panels are the same as the data in the middle panels.
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able than new-item latent strengths by constructing 
two completely equivalent models of their data from 
Experiment 1. (p. 432)

According to them, the new equal-variance probit model 
can fit the asymmetrical ROC data and the frequency rat-
ings data as well as the unequal-variance Gaussian model 
can. Thus, as they see it, neither the Gaussian model nor 
the probit model (nor any other parametric model of latent 
memory strength) is testable, because one can always find 
another model that fits equally well and that yields a dif-
ferent conclusion.

In making this claim, Rouder et al. (2010) appear to have 
mistakenly applied an argument that would have been valid 
had we restricted our analyses to fitting parametric models 
to confidence-based ROC data. Restricted to that domain 
of analysis, the unequal-variance Gaussian model and their 
new equal-variance probit model (not to mention all other 
models based on a monotone transform of the Gaussian 
variable) cannot be empirically distinguished, because 
they are mathematically constrained to provide equivalent 
fits. In that sense, these parametric models are not test-
able. However, we did not restrict our analysis to fitting 
parametric models to ROC data. Instead, the whole point 
of our article was to bring a different method of analysis to 
bear on the issue, one that involves measuring the congru-
ence between parameter estimates based on ROC analysis 
and parameter estimates computed directly from the rat-
ings (which involves no distributional assumptions). As 
we show next, the same method can be used to empirically 
distinguish the Gaussian model from the newly described 
probit model, thereby reinforcing the point that parametric 
models of latent memory strength are, in fact, testable.

The Unequal-Variance Gaussian Model  
Versus the Equal-Variance Probit Model

Rouder et al. (2010) worked out an equal-variance 
signal-detection model by passing random Gaussian vari-
ables (X ) through a Φ(2X/3) filter, where Φ is the stan-
dard normal cumulative distribution function. This filter-
ing process transformed the Gaussian unequal-variance 
model into the equal-variance signal-detection model 
(the probit model) shown in their Figure 5B. Because 
it involves a monotonic transformation of the Gaussian 
variable, this equal-variance model fits ROC data (includ-
ing asymmetrical ROC data) exactly as well as does the 
unequal-variance Gaussian model. Next, they found that if 
the confidence criteria are arranged in a particular nonlin-
ear fashion with respect to the memory strength axis (such 
that the criteria are relatively compressed on the high end 
of the scale as opposed to the low end of the scale), then 
this model can largely reproduce the ratings data reported 
by Mickes et al. (2007). Thus, both the ROC data (which 
suggest that the target distribution is more variable than the 
lure distribution when interpreted by a Gaussian model) 
and the ratings data (which yield standard deviations that 
also suggest that the target distribution is more variable 
than the lure distribution) can be largely reproduced by an 
equal-variance model. That being the case, Rouder et al. 
conclude that our data offer no support for unequal target 

shown in the figure. Obviously, despite their differences, 
all five models are capable of fitting these ROC data rea-
sonably well. Moreover, the models provide widely vary-
ing estimates of σLure / σTarget, ranging from a high of 0.83 
for the Gaussian model to a low of 0.18 for the lognormal 
model. Thus, this figure illustrates the well-known fact that 
ROC data do not uniquely support either the Gaussian inter-
pretation or the idea that the standard deviation of the lure 
distribution is 0.80 times that of the target distribution.

The right column of Figure 1 shows the results of a dif-
ferent analysis. For this analysis, the parameters of each 
model were constrained to equal the corresponding values 
computed directly from the ratings (instead of being esti-
mated by fitting the model to the ROC data). According 
to the ratings, sLure / sTarget 5 0.83. Thus, the σLure / σTarget 
parameter for each model was set to 0.83. In addition, 
according to the ratings, the mean of the target distribu-
tion was 1.19 standard deviations greater than the mean 
of the lure distribution, so the means of each model were 
also constrained to have that same relationship.1 For each 
model, a comparison of the two plots (middle column vs. 
right column) illustrates the congruence between distri-
butional estimates obtained from ROC analysis (which 
involves fitting the parametric model to the data) and dis-
tributional estimates computed directly from the ratings.

It is visually apparent that when the distributional statis-
tics for each model are computed directly from the ratings, 
the performance of the Gaussian model is scarcely affected, 
whereas the other models now exhibit systematic deviations 
(deviations that are especially large for the lognormal and 
the exponential models). The same point can be made in a 
different way by noting that σLure / σTarget estimated from 
fitting each model to the ROC data agrees with the compu-
tation of sLure / sTarget for the Gaussian model but not for the 
other models. Thus, agreement between ROC analysis and 
direct ratings is obviously not preordained, and, a priori, such 
agreement does not seem especially likely. These findings 
should increase confidence in the interpretation provided by 
the unequal-variance Gaussian model in comparison with 
the other four models shown in Figure 1.

The results shown in Figure 1 disconfirm the main argu-
ment made by Rouder et al. (2010), which is that parametric 
models of latent memory strength are not testable. Clearly, 
they are testable. In addition, the evidence weighs in favor 
of the unequal-variance Gaussian model. Indeed, this would 
appear to be the only evidence in the literature that specifi-
cally supports the Gaussian form over other distributional 
forms. Obviously, people may disagree about how compel-
ling they find these results to be, but it does not seem rea-
sonable to suggest that parametric models cannot be tested 
or that the results do not lend more support to the Gaussian 
model than to any of the other models that we considered.

Rouder et al. (2010) attempt to demonstrate that para-
metric models are not testable by comparing the perfor-
mance of the unequal-variance Gaussian model with that 
of a newly contrived equal-variance non-Gaussian model 
(the probit model). As they put it:

We demonstrate the arbitrariness of MWW’s conclu-
sion that studied-item latent strengths are more vari-



440    Wixted aNd miCkes

The performance of the probit model could be im-
proved by assuming a nonlinear mapping relationship 
between memory strength values and the ratings. In fact, 
this is exactly what Rouder et al. (2010) do in their efforts 
to show how well the probit model performed, but this 
is tantamount to adding additional free parameters to the 
model in order to rectify its lack of agreement with the 
observed data. Few would doubt that selectively adding 
free parameters to the probit model (or to any other model, 
for that matter) would improve its performance relative to 
the unequal-variance Gaussian model. The fact that mod-
els involving different numbers of free parameters can fit 
data equally well, which is what Rouder et al. essentially 
show, does not mean that the models are empirically in-
distinguishable. Instead, the ability of one model to more 
parsimoniously account for data than another model is a 
primary determinant of data-based model selection. Ap-
plying that rule here suggests that the probit model is less 
compelling than the Gaussian model. Thus, far from cast-
ing doubt on the unequal-variance Gaussian model, the ef-
forts described by Rouder et al. lend further support to it.

The Limited Range and Interval Nature  
of the Confidence Scale

Our findings are consistent not only with the Gaussian 
signal-detection model but also with the idea that the rat-
ings approximate an interval scale of measurement. That 
is, the tests that we performed suggest that the intervals 
between the confidence criteria are equal enough and the 
range of the confidence criteria on the memory strength 
axis is extensive enough to yield a useful estimate of the 
ratio of the standard deviation of the lure distribution to 
the standard deviation of the target distribution. This is 
not to suggest that the ratings provide a true equal- interval 
measurement scale. For example, scale biases, such as 
preferences for ratings of 5, 10, and 15, are often evident 
in ratings data. Also, although participants in our experi-
ments were instructed not to overuse the endpoints of 1 
and 20, they often did appear to overuse them (especially 
ratings of 20). However, because the confidence criteria 
are apparently arrayed in nonsystematic fashion on the 
memory strength axis across a wide enough range, the 
ratings can be used to compute relative distributional 
statistics that correspond to what would be obtained if 
the ratings provided a true equal-interval scale over the 
full range. If that were not the case, then the fact that 
distribution- free parameter estimates computed directly 
from the ratings closely correspond to Gaussian-based 
parameter estimates computed indirectly from parametric 
ROC analysis would be a surprising coincidence.

Rouder et al. (2010) argue that because the distribution 
of ratings to the target items is clustered at the high end of 
the scale and, to some extent, at the low end as well, the 
ratings cannot provide an interval scale. However, clus-
tering at the endpoints shows that the range of the rating 
scale is limited, like an interval-scale fever thermometer 
that only ranges from 96ºF to 102ºF (and that therefore 
records every temperature less than 96º as 96º and every 
temperature greater than 102º as 102º). If the Gaussian 
model is correct, the ratings cover a limited range on the 

and lure variances, and they abandon hope that either ROC 
data or ratings data will ever shed any light on parametric 
models of latent memory strength. 

As indicated earlier, when the parameters of the Gauss-
ian model are set to equal the mean and standard devia-
tion values computed directly from the ratings, the slope 
of the predicted z-ROC is 0.826, which is close to the 
observed value of 0.833. As a result, the ratings-based 
Gaussian model (i.e., the Gaussian model parameterized 
by distributional statistics computed directly from the rat-
ings) fits the observed ROC data well. However, when the 
parameters of the probit model are set to equal the mean 
and standard deviation values associated with the ratings 
(i.e., when we performed the same test that we performed 
for the five models shown in Figure 1), it does not fit the 
ROC data as well, because it predicts a lower z-ROC slope 
of 0.751. Moreover, the underperformance of the probit 
model appears to be a consistent result. We recently col-
lected data from two very similar ratings experiments as 
part of a different project, and we analyzed those data in 
the same way. When the parameters of the Gaussian and 
probit models were set to the mean and standard devia-
tions computed directly from the ratings, the predicted 
z-ROC slopes were again closer to the observed z-ROC 
slopes for the Gaussian model in both experiments. Fig-
ure 2 shows the obtained z-ROC slopes for all three rat-
ings experiments. Also shown are the predicted z-ROC 
slopes for both models. In all three experiments, the 
Gaussian model outperforms the probit model. Indeed, 
even with only three observations, the (very reliable) de-
viation between observed and predicted z-ROC slopes for 
the probit model is statistically significant [t(2) 5 7.50, 
p , .01]. The small deviation between the observed and 
predicted z-ROC slopes for the Gaussian model does not 
approach significance.
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Figure 2. Obtained z-ROC slopes from Experiment 1 of Mickes, 
Wixted, and Wais (2007) and from two replications (Exp. 1, Rep. 1, 
and Rep. 2, respectively) and predicted z-ROC slopes from the 
Gaussian and probit signal-detection models after constraining 
both models to yield the parameters computed directly from the 
ratings.
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of σLure / σTarget obtained from fitting a Gaussian model 
to the simulated ROC data was 0.80, whereas the estimate 
of sLure / sTarget obtained directly from the simulated rat-
ings was 0.82. Thus, the two measures showed good agree-
ment despite the clustering of ratings at the high end of the 
scale. Similar results were obtained when the criteria were 
arranged in nonsystematic (instead of equal-interval) fash-
ion on the memory strength dimension by adding Gaussian 
random error with a mean of 0 and a standard deviation of 
0.04 to each criterion value. In one such run, the intervals 
between adjacent criterion values ranged from 0.18 to 0.40 
instead of being fixed at 0.28. This yielded data with ap-
parent scale biases in addition to clustering at the high end 
of the scale (much as one sees in real data). Even so, the 
two ratio estimates were both close to 0.80, and, in multiple 
runs of the simulation under these conditions, they usually 
differed by only 0.02 or 0.03. These results show that the 
data are compatible with a Gaussian model despite the non-
Gaussian appearance of the target frequency distribution.

If one wished to quantitatively account for nonsystem-
atic scale biases when fitting a Gaussian model to the 
ratings data, then additional parameters would be needed 
(i.e., an equal-interval scale Gaussian model such as that 
shown in Figure 3 would not fit well). However, because 
the deviations from a true interval scale are apparently 
nonsystematic, these additional parameters are not needed 
to achieve good agreement between Gaussian ROC esti-
mates and estimates computed directly from the ratings. 
For the probit model, by contrast, such agreement can be 
achieved only by adding the assumption that the confi-
dence criteria are arrayed on the memory strength axis 
in a particular way that systematically deviates from an 
equal-interval measurement scale. In effect, this means 
that a nonlinear transformation of the participant-supplied 
ratings would be needed in order to make the ROC-based 

memory strength dimension in a similar way. That limi-
tation could have introduced disagreement between the 
Gaussian ROC fits and the ratings, but, in practice, this 
did not happen.

Intuitively, this might seem an odd result. The higher 
degree of clustering at the high end of the scale should 
cause the standard deviation estimate of the target distri-
bution to be underestimated to a greater degree than the 
standard deviation estimate of the lure distribution. This, 
in turn, should cause the estimate of sLure / sTarget to be 
closer to 1.0 than the estimate of σLure / σTarget estimated 
from fitting a Gaussian model to ROC data. However, a 
simulation analysis shows that this effect, although real, is 
small unless the clustering at the high end of the scale be-
comes more pronounced than it was in our experiment.

For this simulation, the mean of the lure distribution was 
set to 0 and its standard deviation was set to 1. The cor-
responding values for the target distribution were set to 1.2 
and 1.25, respectively. Thus, the standard deviation of the 
lure distribution was 1 / 1.25 (or 0.80) times that of the tar-
get distribution. The 19 confidence criteria were placed be-
ginning at 2 standard deviations below the mean of the lure 
distribution, with the distance between each criterion set 
to 0.28 standard deviations. Next, 10,000 strength values 
were randomly drawn from the lure distribution and another 
10,000 strength values were randomly drawn from the tar-
get distribution, with each value assigned a rating of 1 to 20 
depending on where the randomly selected strength value 
fell in relation to the 19 confidence criteria. These simulated 
ratings were then analyzed by fitting a Gaussian model to 
the z-ROC data (yielding an estimate of σLure / σTarget) and 
by computing sLure / sTarget directly from the ratings.

Figure 3 shows the resulting frequency distribution, 
which is clearly more truncated on the right than on the left 
(as was true of the real data). Nevertheless, the estimate 
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Figure 3. Unequal-variance Gaussian signal-detection model with 19 equally spaced confidence criteria (left) used to generate 
simulated frequency data (right). The true σLure / σTarget value was 0.80. The value estimated from analyzing the simulated receiver-
operating characteristic data was 0.80, and the value computed directly from the simulated confidence ratings was 0.82.
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matic utility in that it allows one to derive mathematical 
results that would be difficult or impossible to derive using 
other distributional assumptions. About this, they say, “Ul-
timately, the justification of any scientific assumption is 
pragmatic, and we shall attempt no further a priori rational-
izations of this assumption” (p. 58).

The probit model would be hard-pressed to rival the 
Gaussian model in these respects even if it had rivaled 
the Gaussian model in its ability to fit the data. Finally, 
in terms of parsimoniously accounting for both empirical 
ROC data and ratings data, we have additionally shown 
that the Gaussian model outperforms the probit model as 
well as a variety of other models (at least at the group level 
of analysis). It is, in fact, the most useful model in that re-
spect as well. If another theory comes along that happens 
to rival its ability to do that, then, instead of abandoning 
parametric ROC analysis in the face of such competition, 
the scientific method should be used to tease them apart. 
That, after all, is our business.
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NOTE

1. For the exponential, this entailed a choice because the mean and 
standard deviation of an exponential distribution are the same, whereas 
they were not the same in the ratings (either for the targets or for the 
lures). We used the standard deviations from the ratings to set the expo-
nential parameters, but the same basic story obtains if the mean values 
are used instead.
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estimates and the ratings-based estimates agree for that 
model. Similarly, the performance of each of the non-
Gaussian models shown in Figure 1 could be improved 
by adding a model-specific assumption about the non-
linear nature of the measurement scale. For example, 
exponentiating the ratings before computing the ratings-
based means and standard deviations would bring those 
estimates into agreement with the estimates obtained from 
fitting the lognormal model to the ROC data. However, in-
troducing a particular nonlinear transformation to rescue 
a model is tantamount to adding free parameters to that 
model. Ordinarily, models are penalized for depending on 
extra considerations like that. This is why we suggest that 
our findings differentially support the Gaussian model 
over the other models that we have considered. Moreover, 
as we see it, this outcome demonstrates that parametric 
models of latent memory strength are testable (which is 
the key point of contention).

The Class of Models in Question
The analyses described here bear on a class of signal-

detection models consisting of two continuous distribu-
tions—one for targets and the other for lures. Among the 
six models that we considered that fall into that class (the 
five models shown in Figure 1, plus the probit model), 
our findings differentially support the unequal-variance 
Gaussian account. Many other models falling into that 
class, though not specifically tested here, would likely be 
outperformed by the Gaussian model as well. However, 
our findings do not differentially support the Gaussian ac-
count over models that do not fall into that class. Two such 
models often mentioned in connection with the analysis 
of asymmetrical ROCs are the mixture signal-detection 
model (DeCarlo, 2002) and the dual-process signal-
 detection/high-threshold model (Yonelinas, 1994). These 
models involve more than two continuous distributions. In 
particular, the former assumes a third (noise) distribution 
representing unattended items, and the latter assumes a 
separate memory process consisting of threshold recollec-
tion. Whether the direct rating methodology used here can 
help to differentiate the unequal-variance Gaussian model 
from those models remains to be seen. 

Useful Scientific Theories Are Useful
The unequal-variance Gaussian model of latent memory 

strength is both a plausible and a useful model. In their clas-
sic signal-detection text, Green and Swets (1966) provided 
a thoughtful discussion about the Gaussian assumption of 
signal-detection theory (pp. 54–69). One of their points 
was that, a priori, there is reason to take the Gaussian as-
sumption seriously because of the central limit theorem, 
which states that the sum of independent, identically dis-
tributed random variables (even non-Gaussian variables) 
approaches a Gaussian distribution as the number of such 
random variables increases. Conceivably, sensory processes 
(and, one might imagine, memory processes) are composed 
of the sum of many such variables. If so, then a Gauss-
ian memory strength model would be expected. Green and 
Swets also noted that the Gaussian assumption has prag-


