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In a well-known article entitled “Why I Am Not a Cog-
nitive Psychologist,” B. F. Skinner (1977) made the fol-
lowing points:

The variables of which human behavior is a function lie in
the environment. (p. 1)

Cognitive psychologists study these relations between or-
ganism and environment, but they seldom deal with them
directly. Instead, they invent internal surrogates which be-
come the subject matter of their science. (p. 1)

The mental apparatus studied by cognitive psychology is
simply a rather crude version of contingencies of reinforce-
ment and their effects. (p. 9)

And in his well-known book Science and Human Behavior
(1953), Skinner also asserted that

the practice of looking inside the organism for an explana-
tion of behavior has tended to obscure the variables which
are immediately available for a scientific analysis. These
variables lie outside the organism, in its immediate envi-
ronment and in its environmental history. (p. 31)

Implicit in these quotations (and rather explicit in some
of Skinner’s other writings) is an indictment of cognitive
theories and the research they generate. According to
Skinner, the status of cognitive theories as reinforcement
history surrogates and the dubious value of such theories

for the understanding of behavior are tightly connected
notions. However, to us, the two notions seem to be quite
distinct. The utility of cognitive theories seems well estab-
lished, and the research generated by them has revealed in-
teresting and nonobvious human capabilities (some of
which we will review in this article). Nevertheless, it might
still be true that cognitive models often serve as reinforce-
ment history surrogates, thereby obscuring the environ-
mental variables that are the more distal and potentially ob-
servable and controllable causes of behavior. In that sense,
cognitive theories, useful though they may be, are open to
criticism.

Skinner (1977) developed the cognitive-theories-as-
surrogates idea by considering very general explanatory
constructs that show up in one way or another in many
different theories. Thus, for example, explanations appeal-
ing to an organism’s “knowledge” or “representations,”
ideas that form the foundation of many cognitive models,
were criticized as offering no real understanding and as
drawing attention away from the true causes of behavior.
Criticizing the very foundation of cognitive theories ren-
ders the argument widely applicable while, perhaps, si-
multaneously (and somewhat paradoxically) limiting its
impact. Unless the argument is addressed to specific the-
ories that have been advanced to explain specific findings
in the literature, it may come across as philosophical spec-
ulation that is of interest mainly to philosophers. That the
argument does apply to specific theories is what we will try
to show in this article, and our case in point will be signal-
detection–based likelihood ratio models of human recog-
nition memory. Several comprehensive models of human
recognition memory have been proposed in recent years
that are based on the idea that the memory system com-
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B. F. Skinner (1977) once argued that cognitive theories are essentially surrogates for the organism’s
(usually unknown) reinforcement history. In this article, we argue that this notion applies rather di-
rectly to a class of likelihood ratio models of human recognition memory. The point is not that such
models are fundamentally flawed or that they are not useful and should be abandoned. Instead, the
point is that the role of reinforcement history in shaping memory decisions could help to explain what
otherwise must be explained by assuming that subjects are inexplicably endowed with the relevant dis-
tributional information and computational abilities. To the degree that a role for an organism’s rein-
forcement history is appreciated, the importance of animal memory research in understanding human
memory comes into clearer focus. As Skinner was also fond of pointing out, it is only in the animal lab-
oratory that an organism’s history of reinforcement can be precisely controlled and its effects on be-
havior clearly understood.
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putes a likelihood ratio in order to determine whether or
not an item was recently encountered on a list. These mod-
els assume that the understanding of human recognition
memory is contingent on the understanding of the under-
lying computational machinery. Our central claim is that
Skinner may have been right about this theoretical ma-
chinery: It is largely a stand-in for the organism’s learning
history. To the extent that this point is appreciated, the rel-
evance of animal memory research to the understanding of
human memory becomes much clearer than it otherwise
might be. Indeed, it is only in the animal laboratory that
the connection between an organism’s prior reinforcement
history and its current memory decisions is clearly evident
(Alsop, 1998). To quote Skinner (1953) again: “We study
the behavior of animals because it is simpler. Basic pro-
cesses are revealed more easily and can be recorded over
longer periods of time. . . .We may arrange genetic histo-
ries to control certain variables and special life histories to
control others” (p. 38). Illustrating the validity of this point
is the main purpose of the present article.

The likelihood ratio models that we will consider in
making our case represent one form of signal detection
theory, so we will begin our inquiry into this issue with a
brief overview of that basic framework.

Signal Detection Theory
Since the late 1960s, theories of human recognition

memory have involved concepts drawn from signal detec-
tion theory. In a typical recognition memory task, subjects
first study a list of items (e.g., words or pictures) and are
then presented with a recognition test in which items are
presented one at a time for an old/new recognition deci-
sion. A response of old means that the subject believes
that the word appeared on the list; new means that the sub-
ject believes that it did not. Typically, half of the test items
actually did appear on the list (targets), and half did not
(lures). Imagine that subjects correctly respond old to
84% of the targets (i.e., the hit rate is .84) and incorrectly
respond old to 16% of the lures (i.e., the false alarm rate
is .16). How should we conceptualize a performance like
this? Signal detection theory offers one appealing answer.
This theory comes in two basic versions, one of which is
fairly simple and the other of which is more complex.

In its simplest form, signal detection theory holds that
a decision about whether or not an item was recently en-
countered on a list depends on its level of familiarity. If the
item’s level of familiarity exceeds a criterion value, it is
judged to be old; otherwise, it is judged to be new. As is
illustrated in the upper panel of Figure 1, familiarity val-
ues associated with the old and the new items (i.e., the tar-
gets and the lures, respectively) are usually assumed to be
normally distributed, with the mean of the target distribu-
tion located at a higher point on the familiarity axis than
the mean of the lure distribution. The decision criterion
specifies the familiarity value above which an item is de-
clared to be old, and it can be placed anywhere along the
familiarity axis. In Figure 1, it is placed exactly halfway
between the means of the target and the lure distributions.
The shaded area in Figure 1 represents the proportion of

lures that are incorrectly judged to be old because they are
associated with familiarity values that fall above the cri-
terion. That proportion is known as the false alarm rate. The
false alarm rate for the situation depicted in Figure 1 would
be about 16% (whereas the hit rate would be 84%).

An important assumption of the detection theory just
described is that the decision axis represents a strength-
of-evidence variable, such as familiarity. Although many
signal detection models of recognition memory make pre-
cisely that assumption, another class of detection models
does not. These models assume that the decision axis rep-
resents a log likelihood ratio scale. According to a likeli-
hood ratio model, recognition decisions are based on a sta-
tistical computation: If the computed odds that the item
appeared on the list are high enough (usually greater than
even), the item is declared to be old; otherwise, it is de-

Figure 1. Upper panel: standard familiarity-based signal de-
tection model of recognition memory. The decision axis repre-
sents a familiarity scale that ranges from low to high. Lower
panel: likelihood ratio version of the signal detection account of
recognition memory. The decision axis represents a log likelihood
ratio scale that ranges from minus infinity to plus infinity.
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clared to be new. The lower panel of Figure 1 illustrates
the likelihood ratio model, and it is immediately apparent
that it looks a lot like the familiarity model shown in the
upper panel of Figure 1. The only real difference is the de-
cision axis, which now represents a log likelihood scale.

Likelihood ratio models assume that the operative psy-
chological variable is an odds ratio associated with the test
item, not its level of familiarity. The odds ratio is equal to
the likelihood that the item was drawn from the target dis-
tribution divided by the likelihood that it was drawn from
the lure distribution. Graphically, this value is given by the
height of the target distribution divided by the height of
the lure distribution at the point on the familiarity axis
where the item falls. Consider, for example, an item that
generates a level of familiarity equal to the mean famil-
iarity of the targets. The height of the target distribution
at its mean is 7.38 times the height of the lure distribu-
tion (hL). As such, a test item that generates this level of
familiarity (i.e., a familiarity of mTarget) is 7.38 times as
likely to have been drawn from the target distribution as
from the lure distribution. Whenever the odds are greater
than even, as they are in this case, an unbiased subject
would declare the item to be old. Note that the natural log
of 7.38 is 2.0, so the same item that generates a level of
familiarity falling at the mean of the target distribution
in the upper panel of Figure 1 generates a log likelihood
ratio of 2.0 in the lower panel of Figure 1. Similarly, an
item whose familiarity value falls midway between the
means of the target and the lure distributions is associated
with a likelihood ratio of 1.0 (i.e., the heights of the two
distributions are equal at that point), which translates to a
log likelihood ratio of 0 in the lower panel of Figure 1.

Whereas the strength version of signal detection theory
requires only that the subject have some criterion famil-
iarity value in mind in order to arrive at a recognition de-
cision, the likelihood ratio version requires much more
complete knowledge of the shapes and locations of the
underlying familiarity distributions in order to make the
relevant statistical computations. Although those added
assumptions may seem implausible, it seems clear that
subjects sometimes behave as if they do possess the rel-
evant knowledge. The evidence bearing on this claim will
be reviewed next, and the question we will later ask is this:
Are humans biologically endowed with the requisite
knowledge and computational ability, or have they been
trained to behave that way as a function of prior (extra-
laboratory) consequences?

Explaining the Mirror Effect
The old/new decision criterion. What is the advan-

tage of assuming a likelihood ratio model of memory? The
familiarity and likelihood ratio accounts are equally able
to explain, say, a hit rate of .84 and a false alarm rate of
.16 (as is shown in Figure 1), but Figure 2 illustrates an im-
portant difference between them. This figure shows what
the expected result would be if subjects maintained the
same decision criterion as d9 (the standardized distance be-
tween the means of the target and the lure distributions)
changed from low to high. The upper panel shows the

familiarity-based model, and the lower panel shows the
likelihood ratio model. We assume that d9 was affected by
a standard strength manipulation (e.g., in the strong con-
dition, subjects had more time to study the items than in
the weak condition) and that this manipulation affected
the mean familiarity of the target items without affecting
the mean familiarity of the lures (which, in both condi-
tions, are simply items that did not appear on the list).

Note that the definition of the decision criterion differs
between the two accounts. In the strength version, the cri-
terion is a particular level of familiarity (so that items
yielding higher familiarity levels than that are judged to be
old). In the likelihood ratio version, the criterion is a par-
ticular odds ratio (so that items yielding higher odds than
that are judged to be old).

In the familiarity-based model shown in the upper panel
of Figure 2, the criterion is placed 0.75 standard devia-
tions above the mean of the lure distribution whether the
targets are weak or strong (i.e., the criterion is fixed at a
particular point on the familiarity axis). As such, the hit
rate increases considerably as a function of strength, but
the false alarm rate remains constant. If the familiarity of
the lures does not change as the targets are strengthened
(which is the simplest assumption), the only way that the
false alarm rate would change is if the criterion moved
across conditions.

In the likelihood ratio model, the criterion is placed at
the point where the odds are even that the item was drawn
from the target or the lure distributions (i.e., where the
odds ratio is 1.0). The point of even odds occurs where
the heights of the two distributions are equal, and that oc-
curs where the distributions intersect. In the familiarity
model, the point of intersection occurs at one level of fa-
miliarity in the weak case and at a higher level of famil-
iarity in the strong case. But these two familiarity values
both translate to a value of 0 on the log likelihood ratio
axis (i.e., ln[1.0] = 0). Thus, from a likelihood ratio point
of view, the criterion remains fixed at 0 across the two
strength conditions.

Note the different patterns of hit and false alarm rates
yielded by these two fixed-criterion models. Unlike the
familiarity model, the likelihood ratio model naturally pre-
dicts a mirror effect (i.e., as the hit rate goes up, the false
alarm rate goes down), and that pattern happens to be a
nearly universal finding in the recognition memory liter-
ature (Glanzer, Adams, Iverson, & Kim, 1993). The mir-
ror effect is typically observed not only for strength ma-
nipulations, but also for manipulations of word frequency,
concreteness, and a variety of other variables (Glanzer &
Adams, 1990). The ability of the likelihood ratio model to
account for the mirror effect in a natural way is one of its
most attractive features. Indeed, largely because of the
mirror effect, recent theorizing about recognition memory
appears to reflect a shift away from the idea that the de-
cision axis represents a strength-of-evidence scale (like
familiarity) and toward the idea that it represents a likeli-
hood ratio scale. In fact, three of the most recent theories
of human recognition memory are based fundamentally
on the notion that recognition memory decisions are
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based on a likelihood ratio computation. These include
theories known as attention-likelihood theory (Glanzer
et al., 1993), retrieving effectively from memory (Shiff-
rin & Steyvers, 1997), and subjective-likelihood theory
(McClelland & Chappell, 1998).

Although the very existence of the mirror effect sup-
ports the likelihood ratio view, that effect can still be eas-

ily represented (and explained) with the simpler version
that assumes a familiarity axis. Thus, for example, imag-
ine that, in one condition, the hit rate is .84 and the false
alarm rate is .16 (so that d9 = 2) and, in another condi-
tion, the hit rate is .69 and the false alarm rate is .31 (so
that d9 = 1). Further imagine that the mean familiarity of
the lure distribution is the same in both conditions but

Figure 2. Upper panel: familiarity-based signal detection model of weak and
strong conditions over which the decision criterion remains fixed on the decision
axis. Lower panel: likelihood ratio signal detection model of weak and strong
conditions over which the decision criterion remains fixed on the decision axis.
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the mean familiarity of the targets is greater in the strong
condition than in the weak condition. Figure 3 shows how
to represent this situation, assuming a familiarity axis.
Basically, when the target distribution weakens, the cri-
terion shifts to the left in such a way as to remain midway
between the means of the target and the lure distribu-
tions. Subjects might very well be inclined to do this be-
cause, after a strong list, they would presumably know that
a test item, had it appeared on the list, would be very fa-
miliar, so a stringent criterion could be used without miss-
ing too many of the targets. After a weak list, by contrast,
they would know that a target item might be somewhat
unfamiliar even if it had appeared on the list, so a less strin-
gent criterion might be used so as not to miss too many of
the targets. If the criterion did shift in this way across con-
ditions (which would not involve a likelihood ratio com-
putation), a mirror effect would be observed. Neverthe-
less, a likelihood ratio theorist would say that the apparent
criterion shift is an illusion: What looks like a criterion
shift on the familiarity axis actually reflects the fact that
the subject uses the same criterion odds ratio in both cases.

Confidence criteria. The argument just presented in
connection with the movement of the old/new decision cri-
terion as a function of strength can be generalized to the

situation in which subjects are asked not only for an old/
new judgment, but also for a confidence rating. Thus, for
example, when asked to decide whether or not a test item
appeared on a study list, the subject might be offered six
choice alternatives, labeled 222, 22, 2, 1, 11,
111, where the first three represent new responses of
varying confidence and the last three represent old re-
sponses of varying confidence. If the subject is absolutely
sure that a particular test item appeared on the list, the
“111” button would be pressed. A less certain old re-
sponse would be indicated by pressing the “11” button
instead.

A straightforward extension of the basic detection
model holds that confidence judgments are reached in
much the same way that old/new decisions are reached
(e.g., Macmillan & Creelman, 1991). That is, as is illus-
trated in Figure 4, a different criterion for each confidence
rating is theoretically placed somewhere along the fa-
miliarity axis. Familiarity values that fall above OH receive
an old response with high confidence (i.e., 111), those
that fall between OM and OH receive an old response with
medium confidence (11), and those that fall between C
and OM receive an old response with low confidence
(+).1 On the other side of the criterion, familiarity values
that fall below C but above NM receive a new response with
low confidence (2), those that fall below NM but above
NH receive a new response with medium confidence (22),
and those that fall below NH receive a new response with
high confidence (222).

As was indicated earlier, the likelihood ratio model
holds that the mirror effect occurs because subjects use the
same likelihood ratio to make decisions in both the strong
and the weak conditions. A fixed likelihood ratio criterion
shows up as a shifting criterion as a function of strength
when the situation is represented by the familiarity version
of detection theory (as in Figure 3). A similar story applies
to the way in which confidence criteria change as a func-
tion of strength. If subjects maintain constant likelihood
ratios for each of the confidence criteria, then, when rep-
resented in terms of the familiarity version of detection
theory, the confidence criteria should move in a predictable
way as d9 decreases. More specifically, as will be described
next, the criteria should diverge, or fan out, as d9 ap-
proaches zero. Figure 5 shows three different ways the con-
fidence criteria might shift as d9 changes from high to low.
In all three cases, the old/new decision criterion shifts to
the left (thereby yielding a mirror effect), but the confi-
dence criteria shift in different ways. The upper panel
shows the confidence criteria shifting in lockstep with the
decision criterion, the middle panel shows the confidence
criteria converging toward the old/new decision criterion,
and the lower panel shows the confidence criteria diverg-
ing (as the likelihood ratio account uniquely predicts).

According to the likelihood ratio account, the old/new
decision criterion, C, is placed in such as way as to main-
tain a likelihood ratio of 1 for unbiased responding. Sim-
ilarly, the OH criterion is placed in such a way as to main-
tain a larger likelihood ratio, such as 10 to 1. That is, any
item that is 10 or more times as likely to have come from

Figure 3. Familiarity-based signal detection model of weak and
strong conditions over which the decision shifts on the decision
axis.
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the target distribution than the lure distribution receives
an old response with high confidence. Different subjects
might use different specific odds ratios before making a
high-confident response, but we will assume that OH
falls where the likelihood ratio is 10 to 1 for the sake of
simplicity. Similarly, the NH criterion (i.e., the criterion
for saying new with high confidence) might be placed in
such a way as to maintain a small likelihood ratio, such
as 1 to 10 (.1). That is, any item with only a 1 in 10 chance
(or less) of having been drawn from the target distribution
receives a no response with high confidence. As d9 de-
creases, this model assumes that the criteria move in such
a way as to maintain these confidence-specific likelihood
ratios.

How could subjects possibly adjust the criteria in this
way? The likelihood ratio model assumes that the subject
not only has information about the location of the target
and lure distributions, but also has information about their
mathematical forms. Where the latter information might
come from is usually underspecified (and is the main
focus of this article). If the target and lure distributions are
Gaussian, with means of d9 and 0, respectively, and com-
mon standard deviation of s, the probability of encoun-
tering a test item with a familiarity of f given that it is a
target, p( f | target), is

(1)

and the probability of encountering a test item with a fa-
miliarity of f given that it is a lure, p( f | lure), is

(2)

where f is a value along the familiarity axis. The mean of
the lure distribution is arbitrarily set to 0 for the sake of
simplicity. All other values (e.g., the mean of the target

distribution and the location of the decision criterion) are
measured with respect to the mean of the lure distribu-
tion. The mean of the target distribution, d9, represents
the number of standard deviations the mean of that dis-
tribution falls above the mean of the lure distribution. In-
deed, whether we are considering the mean of the target
distribution or the location of the decision and confi-
dence criteria, the values represent the number of stan-
dard deviation units above (or below) the mean of the
lure distribution.

According to likelihood ratio models of human recog-
nition memory, subjects use their knowledge of the math-
ematical forms of the target and lure distributions to place
the old/new decision criterion, C, at the point on the fa-
miliarity axis where the height of the signal distribution
equals that of the noise distribution—that is, where the
likelihood ratio, p( f | target)/ p( f | lure), is equal to 1. This
is the optimal location of the decision criterion, because
this is where the odds that the test item was drawn from the
target distribution exactly equals the odds that it was
drawn from the lure distribution. For any familiarity value
greater than that, the odds that the item was drawn from
the target distribution (i.e., that it appeared on the list) are
better than even, in which case an old response makes
sense. As was indicated above, the remaining confidence
criteria are placed in such a way as to maintain specific
odds ratios that are greater than or less than 1. If OH is as-
sociated with a likelihood ratio of 10 to 1, that confidence
criterion is placed on the familiarity axis at the point
where the height of the target distribution is 10 times the
height of the lure distribution regardless of the value of d9.

For any given likelihood ratio, L, the criterion is placed
on the familiarity axis at the point f that satisfies the fol-
lowing equation:

(3)

The right side of the equation is simply the ratio of the
height of the target (signal plus noise) distribution to the
height of the lure (noise) distribution at the point f on the
familiarity axis. That is, using the identities expressed in
Equations 1 and 2,

which, after setting s to 1 for the sake of simplicity and
rearranging terms, simplifies to

Solving this equation for f yields

(4)

To determine where a particular criterion should be
placed on the familiarity axis to satisfy a particular odds
ratio, one need only enter the value of L theoretically as-
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Figure 4. Illustration of the placement of confidence criteria in
a signal detection framework. The old/new decision criterion is
represented by C, and the remaining confidence criteria are rep-
resented by OM, OH, NM, and NH. Familiarity values falling above
OM or OH receive medium- or high-confident old responses (re-
spectively), whereas familiarity values that fall below NM or NH re-
ceive medium- or high-confident new responses (respectively).
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sociated with that criterion. For example, theoretically, the
old/new decision criterion, C, is placed at the point where
the odds ratio is 1, which is to say L( f ) = 1. Substituting
1 for L( f ) (and C for f ) in Equation 2 reveals that C =
d9/2. That is, according to this model, the decision crite-
rion should be placed midway between the target and the
lure distributions no matter what the value of d9 is. If the
criterion were always placed in that location in order to al-
ways maintain a likelihood ratio of 1, a mirror effect
would always be observed (and it almost always is). If OH
is placed at the point on the familiarity axis where the odds

are 10 to 1 in favor of the item’s having been drawn from
the target distribution, Equation 2 indicates that

In other words, OH is placed at a point higher than d9/2 but
by an amount that varies with d9. The more general ver-
sion of this equation is OH = d9/2 + k1/d9, where k1 is the
constant log likelihood ratio associated with OH (which is
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Figure 5. Illustration of the movement of the confidence criteria as a
function of d9 according to the lockstep, range, and likelihood ratio mod-
els (upper, middle, and lower panels, respectively). In each panel, the top
figure represents a strong condition, and the bottom figure represents a
weak condition.
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10 in this example but could differ for different subjects).
Similarly, if NH is placed at the point where the odds are
only 1 in 10 in favor of the item’s having been drawn from
the target distribution, Equation 2 indicates that

The more general version of this equation is NH = d9/2 +
k2/d9, where k2 is the constant log likelihood ratio associ-
ated with NH. This model predicts that the distance be-
tween OH and NH on the familiarity axis will be inversely
related to d9. That distance (i.e., OH minus NH ) is given by

Thus, as d9 becomes very large, OH and NH should con-
verge to the point that they coincide on the evidence axis
(i.e., the distance between them should decrease to 0). By
contrast, as d9 approaches 0, those two criteria should move
infinitely far apart.

The upshot of all of this is that, when the situation is
represented with a familiarity scale, likelihood ratio mod-
els predict that the decision criterion (C) should move in
such a way that the hit rate decreases and the false alarm
rate increases as d9 decreases (i.e., a mirror effect should
be observed), because C will always be placed at d9/2 on
the familiarity axis, since that is the point where the odds
ratio is equal to 1. The more general version of this account
is that all of the confidence criteria should diverge as d9
decreases (as in the lower panel of Figure 5). Mirror effects
are usually observed in real data, and, as will be described
in more detail next, Stretch and Wixted (1998a) showed
that the confidence criteria move in essentially the manner
predicted by the likelihood ratio account as well.

How are the locations of the decision criterion and the
various confidence criteria inferred from actual behavioral
data? The process is not as mysterious as it might seem.
Consider first how d9 is computed. For a given hit and false
alarm rate, only one arrangement of the target and lure dis-
tributions and the criterion is possible, assuming an equal-
variance detection model. For example, symmetrical hit
and false alarm rates of .84 and .16 yield a d9 of 2.0, with
a criterion placement of d9/2 (i.e., C = 1.0 in this exam-
ple). Standard deviation units are used in both cases. That
is, the only way to represent these hit and false alarm rates
in an equal-variance signal detection model is for the
means of the two distributions to be separated by two stan-
dard deviations and for the criterion to be placed one stan-
dard deviation above the mean of the lure distribution. No
other placement of the criterion would correspond to a
false alarm rate of .16 and, given that, no other placement
of the mean of the target distribution would yield a hit rate

of .84. In practice, standard equations exist for making the
relevant computations:

and

Thus, in this example, C = 2z(.16) = 2(21.0) = 1.0,
which is to say that the criterion is placed one standard
deviation above the mean of the lure distribution. This
method of computing the placement of C involves all old
responses to lures with a confidence rating of maybe old
or greater (which is to say, all old responses to lures, 1,
11, or 111). A very similar method can be used to
determine the locations of the various confidence crite-
ria. To determine where the OM confidence criterion is
placed, for example, one can use only those responses to
lures that received a confidence rating of probably old or
greater (i.e., all false alarms committed by choosing the
11 or 111 alternatives). From these responses, a new
false alarm rate can be computed, and the location of the
OM criterion can be estimated by converting that false
alarm rate into a z score (exactly as one usually does for
old responses that exceed the old/new decision criterion).
In practice, a more comprehensive method is used (one
that allows for unequal variance and that takes into account
confidence-specific hit rates as well), but the method just
described works about as well and is conceptually much
simpler (Stretch & Wixted, 1998a). The locations of the var-
ious confidence criteria on the familiarity axis are simply
the cumulative confidence-specific false alarm rates con-
verted to a z score.

Stretch and Wixted (1998a) tested the predictions of the
likelihood ratio account with a very simple experiment. In
one condition, subjects studied lists of words that were pre-
sented quite slowly, after which they received a recognition
test (this was the strong condition). In another, they stud-
ied lists of words that were presented more rapidly, fol-
lowed by a recognition test (the weak condition). For both
conditions, the locations of the various confidence criteria
were computed in essentially the manner described above.
As uniquely predicted by the likelihood ratio account, the
confidence criteria fanned out on the familiarity axis as d9
decreased. Figure 6 presents the relevant estimates of the
locations of the confidence criteria in the strong and the
weak conditions. Note that whereas the location of the de-
cision criterion, C, decreased on the familiarity axis as con-
ditions changed from weak to strong, the location of the
high-confident old criterion, OH, remained essentially con-
stant, which means that even though the overall false alarm
rate increased in the weak condition, the high-confident
false alarm rate did not. This phenomenon is uniquely pre-
dicted by the likelihood ratio account.

Thus, whether we consider the basic mirror effect or the
more complete picture provided by ratings of confidence,
subjects behave as if they are able to maintain essentially
(although not necessarily exactly) constant likelihood ra-
tios across conditions. The fact that subjects are able to do
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this is rather mysterious, at least on the surface, because it
is not clear how they would have acquired the detailed in-
formation it requires (and likelihood ratio models typically
have little to say about this key issue).

Within-list strength manipulations. It is worth not-
ing that although subjects often behave in accordance with
the predictions of likelihood ratio models, there are con-
ditions under which they do not. All this really means is
that it is a mistake to think of humans as being fully in-
formed likelihood ratio computers. For the sake of com-
pleteness, we will turn now to a brief discussion of the
conditions under which subjects do not behave in the man-
ner predicted by likelihood ratio accounts, after which we
will return to the central question of how it is that they
often do.

Strength is usually manipulated between lists to produce
a mirror effect, but Stretch and Wixted (1998b) also ma-
nipulated strength within list. In each list, half the words
were colored red, and they were presented five times each.
The other half were colored blue, and they appeared only
once each. The red and the blue words were randomly
intermixed, and the red word repetitions were randomly
scattered throughout the list. On the subsequent recog-
nition test, the red and the blue targets were randomly in-
termixed with red and blue lures. Obviously, the hit rate
in the strong (red) condition was expected to exceed the
hit rate in the weak (blue) condition, and it did. Of inter-
est was whether or not the false alarm rate in the strong
condition (i.e., to red lures) would be less than the false
alarm rate in the weak condition (i.e., to blue lures). If so,
the within-list strength manipulation would yield results
similar to those produced by the between-list strength ma-
nipulation. However, the results reported by Stretch and
Wixted (1998b) showed a different pattern. In two exper-
iments in which strength was cued by color, the hit rate to

the strong items was much higher than the hit rate to the
weak items (as was expected), but the false alarm rates
were nearly identical. Similar results when other list ma-
terials were used were also recently reported by Morrell,
Gaitan, and Wixted (2002). These results correspond to
the situation depicted earlier in the upper panel of Fig-
ure 2, according to which the decision criterion remains
fixed on the familiarity axis as a function of strength. A
fully informed likelihood ratio computer would not re-
spond in this manner but would, instead, adjust the cri-
terion as a function of strength in order to maintain a
constant likelihood ratio across conditions (as in the 
between-list strength manipulation).

The main difference between the within- and the
between-list strength manipulations lies in how rapidly
the conditions change during testing. In the between-list
case, the conditions change slowly (e.g., all the target
items are weak after one list, and all are strong after the
other). In the within-list case, the conditions change at a
rapid rate (e.g., a strong test item might be followed by a
weak test item followed by a strong test item, and so on).
Under such conditions, subjects tend to aggregate over
those conditions, rather than respond in accordance with
each condition separately. We shall see later that a simi-
lar issue arises in recognition memory experiments in-
volving animal subjects, but the important point, for the
time being, is that these data show that organisms do not
always behave as if they were fully informed likelihood
ratio computers.

Even though subjects do not always behave in exactly
the manner one would expect according to a likelihood
ratio model, they usually do, and the question of interest
concerns how they acquire the information needed to do
that. More specifically, what accounts for the fact that,
when strength is manipulated between lists, subjects have

Figure 6. Estimates of the locations of the confidence criteria (OH,
C, and NH ) in the strong and weak conditions of a recognition memory
experiment reported by Stretch and Wixted (1998a).
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information available so that the confidence criteria fan
out on the familiarity axis as d9 decreases in just the man-
ner predicted by the likelihood ratio account? That is a
question left largely unanswered by likelihood ratio ac-
counts, and suggesting an answer to it is the issue we will
consider next.

Mirror Effects in Pigeons
What is often overlooked in the human cognitive liter-

ature is the possibility that subjects have experienced
years of making recognition decisions and expressing
various levels of confidence. Presumably, those expres-
sions of confidence have been followed by social conse-
quences that have served to shape their behavior. Con-
ceivably, it is those consequences that shaped behavior to
mimic what a history-less likelihood ratio computer
might do. We begin our investigation into this possibility
by making the point that pigeons show a mirror effect,
too. In pigeon research, unlike in human research, recog-
nition memory decisions are followed by experimentally
arranged consequences, and the connection between
where a pigeon places its decision criterion and the con-
sequences it has received in the past is easier to appreci-
ate. That explicitly arranged reinforcers could influence
the location of the decision criterion was recognized from
the earliest days of detection theory (e.g., Green & Swets,
1966), but research into that issue never really blossomed
in the literature on humans. The most influential account
along these lines in the literature on animals, where rele-
vant research did blossom, was proposed some time later
by Davison and Tustin (1978). Nevertheless, it is proba-
bly fair to say that the connection between their research
(and the research their ideas generated) and what a like-
lihood ratio theorist might say about the movement of
confidence criteria across conditions is not easy to see.
Making that connection explicit is what we will try to ac-
complish in this section and the next.

Mirror effects in pigeons can be observed by using a
simple procedure in which the birds are required to dis-
criminate the prior presence or absence of a sample stim-
ulus. In a typical experiment of this kind, sample and no-
sample trials are randomly intermixed, and the pigeon’s
task is to report whether or not a sample appeared earlier
in the trial. On sample trials, the end of the intertrial in-
terval (ITI) is followed by the presentation of a sample
(e.g., the brief illumination of a keylight or the houselight)
and then by the retention interval. On no-sample trials, by
contrast, the end of the ITI is followed immediately by the
onset of the nominal retention interval (i.e., no sample is
presented). Following the retention interval, two choice
stimuli are presented (e.g., red vs. green). A response to
one choice alternative is correct on sample trials, and a re-
sponse to the other is correct on no-sample trials. Pigeons
learn to perform this task with high levels of accuracy
when the retention interval is short, and manipulating the
retention interval across conditions yields a mirror effect.

In Wixted’s (1993) Experiment 2, 4 pigeons were ex-
posed to an ascending series of retention intervals (0.50,

2, 6, 12, and 24 sec), with each retention interval condition
in effect for 15 sessions. The results are shown in Table 1.
The hit rate represents the probability of a correct re-
sponse on sample trials (i.e., a correct declaration that the
sample occurred), and the false alarm rate represents the
probability of an incorrect response (i.e., an incorrect de-
claration that the sample occurred) on no-sample trials.
The data presented in boldface in Table 1 were averaged
over the last 5 sessions of each condition and over the 4
subjects, and these data constitute the main results of the
experiment. The data shown in standard typeface are from
the first session of each new retention interval condition
(save for the 0.50 sec condition, because the birds had not
yet learned the task in the 1st session of that condition).
The data from the 1st session of each condition are in-
structive and will be discussed in more detail after we con-
sider the main findings. The main results show that, not
surprisingly, d9 decreased as the retention interval in-
creased. The more important point is that as the hit rate de-
creased, the false alarm rate reliably increased. In other
words, a mirror effect was observed, just as it almost al-
ways is in human recognition memory experiments.

What explains the existence of a mirror effect in this
case? Figure 7 presents sense-of-prior-occurrence distri-
butions for three retention interval conditions (short,
medium, and long). These distributions are exactly anal-
ogous to the familiarity distributions previously discussed
in relation to human recognition memory, and they repre-
sent the bird’s subjective sense that a sample was pre-
sented. That subjective sense is assumed to vary from trial
to trial on both sample and no-sample trials (according to
Gaussian or Gaussian-like distributions) even for a con-
stant retention interval. Some sense of prior occurrence is
evident even on no-sample trials, perhaps owing to the lin-
gering influence of samples presented on earlier trials or
to inherent noise in the memory system.

When the retention interval is short (upper panel), the
sample distribution falls far to the right because, despite
some variability, the subjective sense of prior occurrence

Table 1
Hit and False Alarm (FA) Rates and d9 Scores From 

a Sample/No-Sample Procedure in Which Retention Interval
Was Manipulated Between Conditions

Retention
Interval (sec) Hit Rate FA Rate d9

0.5 .94 .10 2.83
2.0 (1st) .84 .08
2.0 .88 .14 2.26
6.0 (1st) .60 .14
6.0 .88 .18 2.10

12.0 (1st) .67 .19
12.0 .74 .19 1.52
24.0 (1st) .46 .24
24.0 .65 .28 .97

Note—The data were taken from Experiment 2 of Wixted (1993). The
values in boldface were averaged over the last five sessions of each con-
dition and over the 4 subjects. The values in standard typeface are from
the first session of each new retention interval condition (except for the
0.50 sec condition).
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will generally be quite high (and will fall well above the
decision criterion). Thus, on the majority of sample trials,
the subject would respond correctly (yes). When the re-
tention interval increases (and the sense of prior occur-
rence weakens), the sample distribution gradually shifts
toward the no-sample distribution (middle panel). The no-
sample distribution does not change as a function of re-
tention interval, because there is no memory trace estab-
lished on those trials (so there is no trace that weakens
with retention interval). When the retention interval is very

long, so that memory for the sample fades completely, the
sample and no-sample distributions will overlap, so that
performance on sample and no-sample trials will be in-
distinguishable (a situation that is approached in the lower
panel).

Because each retention interval was in effect for 15 ses-
sions, the birds had time to adjust the location of the deci-
sion criterion in light of the reinforcement consequences
for doing so. For an equal-variance model, reinforcers will
be maximized when the criterion is placed midway be-
tween the two distributions. Leaving a particular retention
interval in effect for a prolonged period gives the birds
time to realize that and to adjust the decision criterion ac-
cordingly. By adjusting the decision criterion in such a
way as to maximize reinforcement, the performance of the
birds exhibits a mirror effect.

That the birds actually do shift the criterion in light of
the reinforcement consequences is perhaps seen most eas-
ily by considering how they behave when a retention in-
terval is first increased from one condition to the next. The
relevant data are presented in standard typeface in Table 1.
Note that each time a retention interval was increased
(e.g., from 0.5 to 2 sec, or from 2 to 6 sec), the hit rate
dropped immediately (and precipitously), whereas the
false alarm rate generally did not change. Over the next 15
sessions, both the hit rate and, to a lesser extent, the false
alarm rate increased.

What explains that pattern? Presumably, on the first day
that a new, longer retention interval was introduced, the ef-
fect on the mean of the sample distribution was immediate.
That is, because of the longer retention interval, the mem-
ory trace of the sample faded to a greater extent, leading to
a less intense sense of prior occurrence, on average. But
that was the only immediate effect. The mean of the no-
sample distribution did not change when the retention in-
terval was increased, because there was no memory trace
established on such trials to fade away. The criterion did
not change, because the bird did not have enough time to
learn where the optimal placement of the decision criterion
might be in order to yield a higher number of reinforcers.
As time passed, though, the bird learned to shift the crite-
rion to the left on the sense-of-prior-occurrence axis (as is
shown in Figure 7), thereby increasing both the hit rate and
the false alarm rate.

The increase in the hit and the false alarm rates as a
function of training at a particular retention interval is un-
mistakably asymmetric. That is, generally speaking, the
hit rate increased a lot, whereas the false alarm rate in-
creased only a little. Part of the explanation for this is that
the appropriate detection model for this situation is not the
equal-variance model we have used throughout this article
but an unequal-variance model (so that the no-sample dis-
tribution is more variable than the sample distribution). A
criterion sweeping across a narrow sample distribution
will affect the hit rate to a much greater extent than a cri-
terion sweeping across a wide no-sample distribution will
affect the false alarm rate. In fact, in a separate experi-

Figure 7. Hypothetical signal and noise distributions (corre-
sponding to sample and no-sample trials, respectively) for three
retention intervals (short, medium, and long) manipulated be-
tween conditions. The location of the decision criterion, C ,
changes with each condition.
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ment, Wixted (1993) reported an analysis of the receiver
operating characteristic that provided clear support for the
unequal-variance model. As was discussed in detail by
Stretch and Wixted (1998), the unequal-variance detection
model complicates likelihood ratio models that assume un-
derlying Gaussian distributions (e.g., under such condi-
tions, there are two points on the sense-of-prior-occurrence
axis where the likelihood ratio equals 1.0). The most
straightforward way out of this problem is to assume that
the distributions are Gaussian-like (e.g., Glanzer et al.,
1993, assume a binomial distribution). The essence of the
likelihood ratio account does not change by assuming dif-
ferent forms, so we will continue to use the equal-variance
Gaussian model for the sake of simplicity.

It might still be tempting to argue that the increasing
false alarm rate as a function of retention interval evident
in Table 1 actually reflects the increasing strength of the
no-sample distribution on the sense-of-prior-occurrence
axis as the retention interval increased, rather than a cri-
terion shift. An upward movement of the no-sample distri-
bution would certainly increase the false alarm rate even if
the location of the decision criterion remained fixed (al-
though why it would increase in strength is not clear). How-
ever, evidence against this fixed-criterion interpretation
is provided by studies that manipulate retention interval
within sessions. Just as human subjects appear to be re-
luctant to shift the decision criterion item by item during
the course of a recognition test, pigeons appear to be re-
luctant to shift the decision criterion trial by trial within
a session. Thus, when retention interval is manipulated
within sessions on a sample/no-sample task, the typical
result is that the false alarm rate remains constant but the
hit rate decreases rapidly as a function of retention inter-
val (Dougherty & Wixted, 1996; Gaitan & Wixted, 2000;
Wixted, 1993). Some relevant data from Wixted are pre-
sented in Table 2, and the theoretical representation of this
situation in terms of signal detection theory is shown in
Figure 8. The fact that the false alarm rate remains con-
stant suggests that variations in the size of the retention
interval do not affect the properties of the no-sample dis-
tribution. Instead, the simplest interpretation is that the
no-sample distribution and the decision criterion are un-
affected by the within-session retention interval manipu-
lation. When retention interval is manipulated between
conditions, there is no reason to assume that the properties
of the no-sample distribution would now be affected by

that manipulation, although such an explanation is tech-
nically possible. Instead, it is much simpler (and much
more theoretically sensible) to assume that the location of
the decision criterion changes as a function of d9.

As an aside, it should be noted that pigeons are not al-
ways reluctant to shift the criterion from trial to trial. In a
standard delayed matching-to-sample procedure, for ex-
ample, pigeons appear to be quite willing to do just that.
White and Cooney (1996) provided the most compelling
evidence in this regard by showing that birds could learn
to associate different reinforcement histories with differ-
ent retention intervals (manipulated within session) when

Table 2
Hit and False Alarm (FA) Rates and d9 Scores From 

a Sample/No-Sample Procedure in Which Retention Interval
Was Manipulated Within Sessions

Retention
Interval (sec) Hit Rate FA Rate d9

0.5 .94 .14 2.63
2.0 .93 .20 2.32
6.0 .73 .17 1.56

12.0 .63 .16 1.32

Note—The data were taken from Experiment 1 of Wixted (1993).

Figure 8. Hypothetical signal and noise distributions (corre-
sponding to sample and no-sample trials, respectively) for three
retention intervals (short, medium, and long) manipulated
within sessions. The location of the decision criterion, C, is fixed.
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the scheduled relative reinforcer probabilities for the two
choice alternatives differed as a function of retention in-
terval. Thus, although subjects are apparently reluctant to
shift the criterion trial by trial on a sample/no-sample task
(in the case of pigeons) or item by item in a yes/no recog-
nition task (in the case of humans), it is clear that this is
not an inviolable principle. Although this issue is clearly
important, it is orthogonal to the main issue at hand, which
is where the information comes from that allows subjects
to behave like likelihood ratio computers whenever they
do shift the criterion.

White and Wixted’s (1999) Reinforcement 
History Model

It is important to emphasize that the decision criterion
is a device used by theoreticians to represent one aspect of
a bird’s (or a human’s) decision-making process. White
and Wixted (1999) proposed that pigeons do not actually
place a decision criterion on a subjective sense-of-prior-
occurrence axis, even though it can be convenient to rep-
resent the situation as such. Instead, they suggested that,
given a particular sense of prior occurrence on a given trial,
the bird’s behavior is governed by its history of reinforce-
ment for making one choice or the other under similar
conditions in the past. Consider, for example, a particular
sense of prior occurrence equal to f in Figure 9. In the past,
this value has sometimes been generated on no-sample
trials and sometimes on sample trials. Usually, though,
that value of f was generated on sample trials, so the prob-
ability of reinforcement for choosing the sample choice
alternative given f is considerably higher than the prob-
ability of reinforcement for choosing the no-samplechoice al-
ternative given f. According to White and Wixted’s model,
birds learn the relative probabilities of reinforcement for
each value of f along the sense-of-prior-occurrence axis.2
If, for a given value of f, the probability of reinforcement
for choosing the sample option is four times that for choos-
ing the no-sample option, then, in accordance with the
matching law, the bird will be four times as likely to choose
sample as no sample. Thus, instead of computing the odds
that the current value of f was produced by a sample trial

(as opposed to a no-sample trial), the pigeon learns the
odds that a reinforcer is arranged on the sample choice al-
ternative (as opposed to the no-sample choice alternative)
for the current value of f.

Note how similar this model is to the likelihood ratio
model described earlier. Just as in the likelihood ratio ac-
count, the ratio of the height of the signal distribution to the
ratio of the noise distribution for a particular value of f is
of critical importance. Where the relevant distributional in-
formation comes from, though, is not well specified in con-
temporary likelihood ratio accounts. White and Wixted
(1999) assumed that the organism had learned the relevant
reinforcer ratios on the basis of prior experience and re-
sponded accordingly. As will be described next, a model
like this winds up making predictions that are a lot like a
likelihood ratio account.

Earlier, we noted that if the underlying sense-of-prior-
occurrence distributions are Gaussian, the sample (or tar-
get) distribution with mean d9 and standard deviation s is
given by

(5)

and the no-sample (or lure) distribution with mean 0 and
standard deviation s is given by

(6)

where f now represents the sense of prior occurrence (anal-
ogous to familiarity in human recognition memory tasks)
on a particular trial and p( f | S) and p( f | NS) represent the
probability that a particular sense of prior occurrence will
occur given a sample (S) or no-sample (NS) trial, respec-
tively. If birds were likelihood ratio computers, we would
assume that they know the forms of these distributions and
could compute the ratio of p( f | S) / p( f | NS) on a given
trial. What the pigeons instead learn, according to White
and Wixted’s (1999) account, is the probability that a rein-
forcer is arranged on the sample choice alternative given f,
which will be denoted as p(RS | f ), and the probability that
a reinforcer is arranged on the no-sample choice alterna-
tive given f, which will be denoted as p(RNS | f ). Assum-
ing that a sample trial is as likely to occur as a no-sample
trial, the probability that a reinforcer is arranged on the
sample choice alternative given f is

(7)

where rS is the experimenter-arranged probability that a
correct choice of the sample alternative will be reinforced
(rS is usually 1.0). Similarly, the probability that a rein-
forcer is arranged on the no-sample choice alternative
given f is

(8)

where rNS is the experimenter-arranged probability that a
correct choice of the sample alternative will be reinforced
(rNS is also usually 1.0).
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Figure 9. Hypothetical sample and no-sample distributions
illustrating their relative heights at a particular point, f, on the
sense-of-prior-occurrence axis.
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White and Wixted’s (1999) model assumes that pi-
geons learn p(RS | f )and p(RNS | f ) during the course of
training, and in light of this information, they respond to
the choice alternatives in accordance with the matching
law. If p(BS | f ) represents the probability of choosing the
sample choice alternative given f and p(BNS | f ) represents
the probability of choosing the no-sample choice alterna-
tive given f, then

(9)

which, after replacing p(RS | f ) and p(RNS | f ) with their
equivalent values from Equations 7 and 8, can be rewrit-
ten as

(10)

These equations state that the behavior ratio given f is
equal to the reinforcer ratio given f, which is essentially
the matching law for each value of f along the sense-of-
prior-occurrence axis.

If rS = rNS = 1.0 (i.e., if the probability of reinforcement
for a correct response on sample and no-sample trials, re-
spectively, is 1.0), as is typically the case, Equation 10 re-
duces to

Note that the term on the right side of this equation is the
likelihood ratio. That is, after replacing p( f | S) and p( f |
NS) with their equivalent values from Equations 5 and 6,
this equation becomes

Although the choice behavior ratio (left side of the
equation) happens to equal the likelihood ratio (right side
of the equation) when rS = rNS, a likelihood ratio compu-
tation is not assumed to be governing the bird’s behavior.
What drives the bird’s choice, according to White and
Wixted’s (1999) model, are the learned odds that a rein-
forcer is arranged on one alternative or the other, not the
computed odds that the current value of f was generated
by a sample, as opposed to no sample. In a typical con-
current VI VI experiment, pigeons are generally assumed
to learn the probabilities of reinforcement associated with
the two choice alternatives and to respond in accordance
with the matching law. White and Wixted’s account makes
exactly the same assumption, except that it assumes that
the birds learn different reinforcement probabilities asso-
ciated with the two alternatives, depending on what f hap-
pens to be. What f happens to be is determined, in part, by
the form of the underlying sense-of-prior-occurrence dis-
tributions, although the birds are not assumed to have any
direct knowledge of that.

There is some point on the sense-of-prior-occurrence
axis (i.e., some value of f ) that leads the bird to be indiffer-
ent between the two choice alternatives because, at that
point, the experienced probability of reinforcement hap-
pens to be the same for both the sample and the no-sample
choice alternatives. At the indifference point, p(BS | f ) =
p(BNS | f ). If rS = rNS = 1.0, it is easily shown that the value
of f that yields indifference is d9/2. If p(BS | f ) = p(BNS | f ),
which is to say that p(BS | f ) / p(BNS | f ) = 1, then, accord-
ing to Equation 10,

Solving this equation for f provides the point on the
sense-of-prior-occurrence axis that yields indifference.
Substituting the appropriate Gaussian density functions
for p( f | S) and p( f | NS) from Equations 5 and 6 and
canceling out the 1/Ï2ps2 terms that appear in the nu-
merator and denominator yields

(assuming that s = 1 for simplicity). When solved for f,
this equation yields

(11)

Note the similarity between Equation 11 and Equation 4.
According to Equation 11, if rS = rNS, so that ln(rNS/rS) =
0, the indifference point occurs at d9/2. This familiarity
value corresponds to the indifference point and could be
represented as f1/1 = d9/2, where the subscript 1/1 repre-
sents the ratio of programmed reinforcer probabilities
(rNS/rS). This is exactly analogous to a central prediction
of the likelihood ratio model, according to which the cri-
terion will be located midway between the target and the
lure distributions even when d9 changes (thereby yielding
a mirror effect). The difference is that White and Wixted’s
(1999) model assumes that no actual criterion is placed on
a decision axis. Instead, the organism is responding in ac-
cordance with the matching law on the basis of its prior
history of reinforcement for choosing the sample and no-
sample alternatives for particular values of f. In this case,
the pigeon has learned that when f = d9/2, the probability
of reinforcement is the same for the sample and the no-
sample choice alternatives. For any value greater than d9/2,
the odds favor a reinforcer’s being available for choosing
the sample alternative (because that is the way it has been
in the past), so the bird will no longer be indifferent. For
any value less than d9/2, the odds favor a reinforcer’s being
available for choosing the no-sample alternative, so the
bird will tend to prefer that alternative. Although rein-
forcement history and likelihood ratio accounts differ fun-
damentally, the predictions of the two accounts are the
same—namely, that a mirror effect should be observed.

Again, although we assume that the indifference point
represents the learned value of f associated with equal re-
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inforcement probabilities, this is not to say that the situa-
tion cannot be represented with a criterion placed on a de-
cision axis, as in Figure 7. What the criterion represents,
though, is not a value that the organism has calculated on
the basis of its inherent knowledge of the situation or a
value that the bird has decided to use as a criterion value
against which to evaluate all trial-by-trial sense-of-prior-
occurrence values. Instead, the criterion simply depicts
the point on the sense-of-prior-occurrence axis where, ac-
cording to the subject’s learning history, the probability of
reinforcement for choosing the sample alternative is the
same as the probability of reinforcement for choosing the
no-sample alternative.

The similarity between the standard likelihood ratio
account and the reinforcement history account proposed
by White and Wixted (1999) extends beyond the mirror
effect. In fact, if the probabilities of reinforcement for cor-
rect responses on sample and no-sample trials differ (e.g.,
if rNS > rS), the effect of that manipulation on the indif-
ference point along the sense-of-prior-occurrence axis is
exactly analogous to the effect of changes in d9 on the
location of the confidence criteria discussed earlier in
connection with studies of human recognition memory.
Earlier, we considered an example in which the high-
confident old criterion was placed on the decision axis at
the point where the odds that the test item was drawn from
the target distribution was 10 to 1 in favor (and the high-
confident new criterion was placed where the odds were
10 to 1 against). What we showed is that the distance be-
tween these two extreme criteria should increase (i.e., the
confidence criteria should fan out, as in the lower panel
of Figure 5) as d9 decreases, and we also showed that the
data qualitatively correspond to this prediction (as is shown
in Figure 6). The same story emerges from the reinforce-
ment history account proposed by White and Wixted. Con-
sider, for example, where the choice indifference point
would fall on the sense-of-prior-occurrence axis if the
probability of reinforcement for a correct no-sample re-
sponse was 10 times that of a correct sample response (e.g.,
rNS = 1.0 and rS = .1). Because reinforcers are so likely to
be arranged on the no-sample choice alternative, the pi-
geon should demand an especially high sense of prior oc-
currence that the sample occurred before actually choosing
the sample choice alternative. In other words, according to
one way of thinking, the bird should have high confidence
that the sample really did occur before choosing that alter-
native. How high should this indifference point be on the
sense-of-prior-occurrence axis when rNS = 10rS? Substi-
tuting 10 for rNS/rS in Equation 11 and solving for f yields

In other words, f10/1 (the indifference point when rNS =
10rS) occurs at a point higher than d9/2, but by an amount
that varies with d9. The more general version of this equa-

tion is f10/1 = d9/2 + k1/d9, where k1 is the constant rNS/rS.
Similarly, if rS = 10rNS, then

The more general version of this equation is f1/10 = d9/2 +
k2/d9, where k2 is the constant rNS/rS. This model predicts
that the distance between f10/1 and f1/10 on the sense-of-
prior-occurrence axis will be inversely related to d9. That
distance (i.e., f10/1 minus f1/10) is given by

Thus, as d9 becomes very large, f10/1 and f1/10 should con-
verge to the point that they coincide on the evidence axis
(i.e., the distance between them should decrease to 0). By
contrast, as d9 approaches 0, those two indifference points
should move infinitely far apart.

All of this is just another way of saying that the pigeon’s
sensitivity to variations in relative reinforcer probabilities
should be low when d9 is large and high when d9 is small.
This was actually the prediction tested by the experiments
conducted by White and Wixted (1999). When d9 was
high (owing to a short retention interval), variations in rel-
ative reinforcer probabilities (i.e., variations in the ratio of
rNS to rS) had little effect on behavior. When d9 was low
(owing to a long retention interval), identical variations in
relative reinforcer probabilities had a large effect on be-
havior. In that sense, the birds were behaving like likeli-
hood ratio computers. Because White and Wixted knew
the reinforcer probabilities, they were able to plot relative
choice probabilities as a function of relative reinforcer
probabilities to show that sensitivity changed in the pre-
dicted manner as d9 decreased. However, they could have
instead computed indifference points for each reinforcer
ratio condition, and the data would have shown that these
points fan out on the sense-of-prior-occurrence axis as d9
decreased (because that is just another way of saying that
sensitivity to reinforcement increased as d9 decreased).
The pattern is the same as that observed for humans mak-
ing confidence judgments, but the connection to the or-
ganism’s reinforcement history is transparent only for the
pigeons whose reinforcement history we had control over.

Why Do Humans Behave Like 
Likelihood Ratio Computers?

These considerations offer a new way to understand why
humans tend to behave like likelihood ratio computers. As
we considered earlier, humans tend to exhibit a mirror ef-
fect in recognition memory tasks, and more generally, they
adjust their confidence criteria across conditions in a man-
ner predicted by likelihood ratio models. Let us consider
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again why a subject might provide a high-confident old re-
sponse when an item is so familiar that the odds are 10 to
1 in favor of its having been drawn from the target distrib-
ution. From the likelihood ratio point of view, this occurs
because the subject computes the relative heights of the tar-
get and lure distributions on the basis of knowledge of the
shapes of the underlying distributions. If

a high-confidentold response is given. According to the re-
inforcement history account, by contrast, a high-confident
old response is given when, for the current value of f, the
odds that an old response would be correct on the basis of
prior feedback is 10 to 1 in favor:

where p (ROld | f ) represents the past probability that,
given this value of f, socially reinforcing feedback for an
old response occurred and p(RNew | f ) represents the past
probability that, given this value of f, socially reinforc-
ing feedback for a new response occurred. If humans
obey the matching law, then

(12)

which is exactly analogous to Equation 9. According to
this equation, a high-confidentold response would not al-
ways occur even if the reinforcer ratio on the right side of
the equation were equal to 10, because the choice rule in-
volves matching, not maximizing. Still, such a response
would be 10 times as likely as a (low-confident) new re-
sponse. If humans maximize rather than match, they
would always respond old when the right side of the equa-
tion exceeds 1 (and would always respond old with high
confidence when it exceeds, say, 10). The essence of our
model does not change whether we assume that humans
match or maximize.

By using exactly the same reasoning that converted
Equation 9 into Equation 10, Equation 12 becomes

(13)

Thus, a high-confident old response is likely to occur
when, for example,

where rOld and rNew represent the probabilities that rein-
forcing feedback occurred for correct old and new re-
sponses, respectively. These values are exactly analogous
to rS and rNS, the experimenter-arranged probabilities of
reinforcement for correct sample and no-sample choices.
The values of rS and rNS in a pigeon experiment are con-
trolled by the experimenter and are usually set to 1.0. By
contrast, we have no way of knowing if, in life, rOld =

rNew. Assuming, for the sake of simplicity, that they are
equal, the mathematics of the reinforcement history ac-
count becomes equivalent to the mathematics of the likeli-
hood ratio account. Conceptually, though, the two accounts
are quite different. The learning model assumes that our
human subjects, like our pigeons, have learned the relevant
reinforcer ratios associated with each value of f along the
familiarity axis. Whereas our birds would be 10 times as
likely to choose, say, the sample alternative over the no-
sample alternative under these conditions, our humans
would be 10 times as likely to say old as new, and, if they
did say old, they would do so with high confidence (know-
ing full well that the probability of reinforcing social feed-
back would be high, because that is the way it has been in
the past). In essence, the math of the reinforcement history
account reflects what experience has taught the subject
about reinforcement outcomes for each value of f.

For pigeons, we needed to adjust the scheduled rein-
forcement probabilities in order to move the indifference
point on the sense-of-prior-occurrence axis to the rela-
tively high value at which the experienced probabilities of
reinforcement for the two choice alternatives were equal.
That is, because we cannot easily ask the pigeon for a con-
fidence rating, we instead arrange the reinforcement out-
come probabilities in such a way that the bird would be
reluctant to choose the sample alternative unless it were
highly confident that the sample was actually presented
on the current trial. Thus, for example, if rNS = 10rS, the
bird would generally not be inclined to choose the sample
alternative, because reinforcers are so much more likely to
be available on the no-sample choice alternative. Indeed,
the indifference point on the sense-of-prior-occurrence
axis under these conditions occurs not at d9/2, but at a
higher point—namely, d9/2 + 2.30/d9. For humans, we
usually do not alter the relative probability of reinforce-
ment, but their confidence ratings can be used to tell us
(theoretically) where, on the familiarity axis, the odds of
prior reinforcement for an old response were high. In this
sense, a typical human recognition memory experiment is
essentially a probe test, revealing the effects of prior learn-
ing. A subject expresses high confidence in an old deci-
sion when the familiarity of a test item falls at a point
where, in the past, the probability of reinforcement for an
old response was especially high (e.g., 10 to 1 in favor).

The reinforcement learning model becomes identical to
the likelihood ratio model if we assume that organisms do
not learn specific f ® reinforcement outcome relations
but, instead, that they learn the mathematical forms of the
underlying distributions and make the relevant familiarity-
specific reinforcer ratio computations (such as a trained
neural network might do). Even if this assumption were
made, however, the interesting part of the explanation of
why humans behave like likelihood ratio computers lies in
the training history. To take one analogy, if a dog is trained
to catch a Frisbee while running on its hind legs and wink-
ing one eye, we could say that the dog’s neural network is
performing miraculous feats. But the neural network is just
doing what it was trained to do (and it would be doing
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something else if it had been trained in a different way). The
real explanation for why it is that the dog behaves in such
an interesting way lies in the specifics of the dog’s training
history. Our argument is that the same considerations apply
to humans expressing recognition memory confidence
judgments, and the best way to gain insight into this pro-
cess may be to study the effects of reinforcement on the
memory behavior of nonhuman subjects.

Conclusion
Both humans and pigeons can be shown to behave in

accordance with likelihood ratio models that appear to re-
quire inherent knowledge of the underlying familiarity
distributions. Prevailing explanations for such behavior
tend to focus on the computational abilities of the organ-
ism’s neural network without detailing the origins of the
relevant distributional information. A neural network
may indeed perform such computations in just the man-
ner suggested by likelihood ratio models, but our point is
that the network does so because of the way it was trained
by life or (in the case of pigeons) by laboratory experi-
ence. The neural network would presumably perform in a
different way had the subject’s reinforcement history been
such that, for example, incorrect high-confident old re-
sponses were reinforced with higher probability than cor-
rect ones. In reality, we assume that socially reinforcing
feedback is much more likely for correct than for incorrect
high-confident old responses.

Abundant research in recent years has suggested that
the behavior of humans working on signal detection tasks
is governed in lawful ways by reinforcement outcomes
(e.g., Erev, 1998; Johnstone & Alsop, 1999, 2000). It would
be surprising indeed if only laboratory-based reinforcers
affected their behavior in this way. Indeed, our central as-
sumption is that humans are exquisitely sensitive to rein-
forcers that are arranged by life experiences. From this
point of view, the interesting part of the story, the part that
explains why subjects (including pigeons) appear to behave
like likelihood ratio computers, lies not in the inherent
properties of the subject’s neural network, but in the sub-
ject’s history of reinforcement. The behavior of the neural
network (and the behavior of the subject) reflects that his-
tory, and in that sense, Skinner (1977) was probably right
when he asserted that “the mental apparatus studied by
cognitive psychology is simply a rather crude version of
contingencies of reinforcement and their effects” (p. 9). If
so, much of what is interesting about human memory will
be illuminated only by studying animals whose reinforce-
ment history can be studied in a much more direct way.
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NOTES

1. A potentially confusing issue is that the symbol C is sometimes used
as a measure of response bias and its value is equal to the criterion’s dis-
tance from the point of intersection between the signal and the noise dis-
tributions. By contrast, we use C to denote the location of the criterion rel-
ative to the mean of the noise distribution.

2. Actually, the probability that a continuous random variable assumes
a particular value, f, is zero. Thus, in what follows, we will actually as-
sume that the value in question is some small interval on the familiarity
axis that does have a certain probability of occurrence.
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