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Wayne Wickelgren, who died on November 2, 2005, after a long

battle with Lou Gehrig’s disease, studied the time course of

forgetting more assiduously and more effectively than anyone

since Hermann Ebbinghaus. In a classic article, Wickelgren

(1974) derived an equation that is remarkable in several re-

spects, including in its ability to characterize the famous Eb-

binghaus (1885/1913) savings function. Under typical conditions,

Wickelgren’s power law reduces to

m ¼ lð1þ btÞ�c; ð1Þ

where m is memory strength, and t is time (i.e., the retention

interval). The equation has three parameters: l is the state of long-

term memory at t 5 0 (i.e., the degree of learning), c is the rate of

forgetting, and b is a scaling parameter.

Wixted (2004) showed that Equation 1 provides an accurate

description of forgetting data that have been averaged over many

subjects. It not only fits the data well in terms of the percentage

of variance accounted for—an admittedly weak test—but also

accurately predicts where future points will fall as the retention

interval increases, which is a stronger test. Because of possible

averaging artifacts in group data, an even stronger test would be

to accurately predict the course of forgetting using data from

individual subjects. A practical problem with that approach is

that such data are usually quite noisy. However, the eight data

points of the Ebbinghaus (1885/1913) savings function consti-

tute a rare and notable exception. Previous work has shown that

the Ebbinghaus data are reasonably well characterized by a two-

parameter power function of the form

m ¼ yt�c; ð2Þ

which can be considered an approximation of Equation 1 (An-

derson & Schooler, 1991; Wixted & Ebbesen, 1991). Although

Equation 2 offers a much better fit of the savings function than

other two-parameter candidates, it is undefined at t 5 0, which is

theoretically unsatisfying and limits the equation’s practical

utility (e.g., it cannot be used to estimate the degree of learning).

The left panel of Figure 1 shows the Ebbinghaus savings

function along with the least squares fit of the Wickelgren power

law (Equation 1). Not immediately apparent is the fact that there

are actually four successive fits shown in that graph. In the first,

Equation 1 was fit only to the first five points of the savings

function (up to 24 hr), but was projected out to 31 days and

drawn through all eight points. In the second, Equation 1 was fit

to the first six points and then projected out to 31 days. In the

third, it was fit to the first seven points, and in the fourth, it was fit

to all eight. Remarkably, the four successive fits appear to be a

single curve (i.e., they literally fall atop one another). The inset

graph shows the fit of the power law using the data from the first

24 hr only. Although those five points appear to be almost ver-

tically arranged in the larger graph, the general form of forget-

ting over 24 hr is actually much like the general form of

forgetting over 31 days.

The right panel of Figure 1 shows a similar series of fits using

another candidate function—the exponential function—of the

form

m ¼ ða� cÞe�bt þ c; ð3Þ

where a is the degree of learning, b is the rate of forgetting, and c

is the asymptote (Rubin, Hinton, & Wenzel, 1999). The shape of

the exponential function often mimics that of the power function

(Wixted, 2004), but the two functions differ in one theoretically

intriguing respect. Specifically, whereas Equation 1 assumes

that the forgetting function descends toward an asymptote of

zero, Equation 3 allows for the possibility that it descends to-

ward an asymptote greater than zero. From Figure 1, it is clear

that Equation 3 systematically errs by overestimating where the

next point will fall as the retention interval increases, such that

the estimated asymptote declines as each new retention interval

is added (as might be expected if the true asymptote were zero).

This result stands in sharp contrast to the fit of the power law,

which projects the same course of forgetting for each fit. Thus,

the Wickelgren power law and the Ebbinghaus savings function

conspire to suggest that forgetting functions ultimately project to

an asymptote of zero.

Equation 1 not only is remarkable in its descriptive and

predictive accuracy, but also offers a unique practical advantage
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with regard to characterizing two properties of individual-sub-

ject forgetting functions that have long been of interest to

memory researchers, namely, the degree of learning and the rate

of forgetting (cf. White, 1985). Equation 1 has two parameters

that correspond to those properties (l and c, respectively). It

also includes a scaling parameter (b), which is needed because

time is measured in arbitrary units. However, it is reasonable to

assume that this parameter remains constant across subjects and

across conditions (i.e., subjects can be assumed to scale time in

the same way), and doing so greatly reduces the number of pa-

rameters that need to be estimated. Specifically, each subject’s

data in a given condition can be fit by Equation 1, with l and c
free to vary across subjects (i.e., the degree of learning and the

rate of forgetting are estimated for each subject), but with b
constrained to be equal across subjects. For 30 subjects, this

would mean estimating 60 parameters (the absolute minimum),

plus 1 additional scaling parameter that is common to all sub-

jects, for a total of 61 parameters. By contrast, fitting Equation 3

to 30 individual forgetting functions would require estimating

90 parameters because none of this equation’s three parameters

can be assumed to remain constant across subjects.

Wickelgren’s contributions to the study of forgetting go well

beyond the equation he proposed (e.g., Wixted, 2004). Still, in

light of the ability of Equation 1 to so accurately characterize the

venerable Ebbinghaus savings function, it seems appropriate to

recognize the Wickelgren power law as an elegant contribution

to the field—one that was never fully appreciated while Wick-

elgren was alive.
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Fig. 1. Four successive least squares fits of Wickelgren’s power law (Equation 1; left panel) and an exponential
function (Equation 3; right panel) to the Ebbinghaus (1885/1913) savings data. The first fit involves the first five
data points, the second involves the first six, the third involves the first seven, and the fourth involves all eight.
Only a single curve is visually apparent in the left panel because the four curves fall atop one another. The inset
graphs show the fits using only the first five points (through 24 hr). For these fits, both the power law and the
exponential function account for 99% of the variance.
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