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On the Nature of Associative Information in Recognition Memory
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In a typical associative-recognition task, participants must distinguish between intact word pairs (both
words previously studied together) and rearranged word pairs (both words previously studied but as part
of different pairs). The familiarity of the individual items on this task is uninformative because all of the
items were seen before, so the only way to solve the task is to rely on associative information. Prior
research suggests that associative information is recall-like in nature and may therefore be an all-or-none
variable. The present research reports several experiments in which some pairs were strengthened during
list presentation. The resulting hit rates and false alarm rates, and an analysis of the corresponding
receiver operating characteristic plots, suggest that participants rely heavily on item information when
making an associative-recognition decision (to no avail) and that associative information may be best

thought of as a some-or-none variable.

An intriguing issue in the study of recognition memory concerns
how people recognize associations between two items beyond
recognition of the items themselves. In a typical associative-
recognition task, participants study a list of word pairs and are later
asked to decide whether pairs presented on a recognition test are
intact or rearranged. Intact word pairs consist of two items that
appeared together on the list, whereas rearranged word pairs con-
sist of two items that appeared on the list as part of different pairs.
An interesting feature of this design is that all of the individual
items have been seen before, so item information (e.g., item
familiarity) does not help the participant to decide whether a given
pair was seen before. In spite of this, and as detailed below,
associative-recognition decisions may involve both item and asso-
ciative information.

The Role of Item and Associative Information in
Associative Recognition

Glenberg and Bradley (1979; Bradley & Glenberg, 1983) and
Nairne (1983) both showed that maintenance rehearsal of a word
pair tends to affect item information without changing the strength
of the associative bond. In Nairne’s experiment, participants re-
ceived trials in which they were presented with a three-digit
number to remember, followed by a distractor task in which they
were asked to repeat a given word pair throughout the retention
interval. The amount of maintenance rehearsal a word pair re-
ceived was manipulated by varying the duration of the retention
interval. At the end of the experiment, participants received a
surprise associative-recognition test for the word pairs that had
served as distractors. Nairne found that lengthening the duration of
maintenance rehearsal increased both the hit rate (“yes” responses
to intact word pairs) and the false-alarm rate (“yes” responses to
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rearranged word pairs) but did not affect participants’ ability to
distinguish intact from rearranged word pairs (i.e., d' was unaf-
fected). Thus, although maintenance rehearsal did not affect the
associative connection between word pairs, it apparently did in-
fluence item familiarity, and the more familiar the individual items
were as a result of maintenance rehearsal, the more likely partic-
ipants were to declare the pair as having been seen before. These
results suggest that participants have faith in the utility of item
information even though such information is not at all diagnostic
in this procedure.

Using a continuous recognition procedure, Hockley (1991,
1992) investigated the loss of item and associative information
as a function of retention interval, and he arrived at similar
conclusions. In this procedure, pairs of items were presented for
study in sequential fashion and, occasionally, the participant
was asked whether a particular pair had been presented earlier
in the session. The lag between study and test (i.e., the retention
interval) was manipulated by varying the number of intervening
presentations. Hockley found that as the retention interval in-
creased, both the hit rate to intact word pairs and the false-alarm
rate to rearranged word pairs decreased in tandem, but d' was
unaffected. Thus, manipulating the duration of the retention
interval does not appear to influence associative information
very much, but it may affect the familiarity of the individual
items. As the familiarity of the items that composed the intact
or rearranged pair decreased with lag, participants apparently
became less confident that the pair was previously encountered.
Once again, these results suggest that item information plays a
role in an associative-recognition procedure even though such
information is not indicative of whether a test pair is intact or
rearranged.

These ideas can be summed up in a signal-detection model
proposed by Hockley (1992). This model states that item informa-
tion () and associative information (A) are both continuously
distributed random variables (such as familiarity), and are additive
in their effects. In other words, item information and associative
information sum to produce a strength-of-evidence value for a
given word pair. If the combined evidence (I + A) exceeds a
decision criterion {c), then the participant concludes that the words
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were presented together.! Thus, according to this model, the hit
rate (H) for an intact pair is equal to the probability that the
summed evidence exceeds a criterion, or

H=p[(I+A)>c] (1)

Associative information is lacking for rearranged pairs, so the
false-alarm rate is a function of item information only. Thus, the
false-alarm rate (FA) for a rearranged pair is equal to the proba-
bility that item familiarity exceeds a criterion, or

FA = p(I> ¢). (2)

According to this model, the average strength of evidence as-
sociated with an intact pair (f;,.c.) €quals average item informa-
tion (M) Plus average associative information (p,e.c). Thus,
Mintact = Miters T Massoc- BY contrast, the average evidence value
for a rearranged pair (p,.,,) derives only from item information
because no associative information was stored during list presen-
tation (i.€., e = Miem)- ThUs, the difference between the mean
evidence values for the intact and rearranged distributions (i.e.,
Mintact ~ ""rearr) iS equal to HMitem + Massoc — Mitem> Whlch is Slmply
equal t0 Mo

Hockley’s (1992) model is illustrated graphically in Figure 1.
The upper panel shows the intact and rearranged distributions
following a short retention interval, and the lower panel shows the
corresponding distributions following a long retention interval. In
terms of this simple model, .., is affected by the delay since the
pair was seen, but w, .. is not. Thus, if ., decreases as the
retention interval increases, the strength of evidence for both intact
and rearranged word pairs declines (thereby decreasing both the hit
rates and false-alarm rates), but the average difference between
the intact and rearranged distributions remains unchanged (i.e.,
Hintact — Mrearr = Massocs Tegardless of whether y;. ., is large or
small). As a result, d’, a standardized measure of the distance
between the intact and rearranged distributions, is unaffected by
this manipulation.

Also shown in both panels of Figure 1 is a distribution labeled
p-lures (i.e., pair lures). The pair-lure distributions represent hy-
pothetical familiarity values associated with entirely new pairs,
that is, pairs in which neither word was previously studied. Hock-
ley (1992) did not actually consider how pair lures might fit in, but
the extension of his model to include them seems straightforward
(and is relevant to the research we describe later). The difference
between the rearranged distribution and the pair-lure distribution is
solely a function of item information because in neither case were
the items studied together. That is, associative strength equals zero
in both cases, but the average familiarity of the individual items is
high in the case of rearranged pairs (because the items were seen
earlier as part of a different pair) and low for pair lures (because
the items have not been encountered previously in the experiment
setting). Although neither maintenance rehearsal nor retention
interval affects the distance between the intact and rearranged
distributions, such manipulations would affect the distance be-
tween these two distributions and the pair-lure distribution. As
illustrated in Figure 1, the mean of the pair-lure distribution is
unaffected by the size of the retention interval, because these items
were not presented earlier in the experiment.

The Role of Retrieval in Associative Recognition

Although the model illustrated in Figure 1 does a nice job of
accounting for some findings in the associative-recognition liter-
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Figure 1. Hypothetical strength-of-evidence distributions for pair lures,
rearranged pairs, and intact pairs following a short retention interval (upper
panel) and long retention interval (lower panel).

ature, it does not easily accommodate other findings that suggest a
role for retrieval processes in associative recognition. In accor-
dance with this idea, one member of a word pair can aid in the
decision process by serving as a retrieval cue for the other member
of the pair (Humphreys, 1978; Mandler, 1980). Successful re-
trieval of this kind enables participants to confidently accept intact

! As discussed by Hockley (1992), one could instead assume that the
evidence axis represents associative information only and that the change
in hit rates and false-alarm rates reflects a criterion shift occasioned by the
changing levels of item familiarity. Adopting this point of view would not
change the essence of our arguments in any way, so we rely on the simpler
account illustrated in Figure 1. Hockley (1992, Footnote 1) pointed out that
the version of his model that we have adopted was actually suggested by
Douglas Hintzman.
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word pairs and to confidently reject rearranged word pairs. Thus,
unlike the model illustrated in Figure 1, retrieval models assume
that associative information plays a role for rearranged pairs as
well as for intact pairs.

Experiments by Clark, Hori, and Callan (1993) and Clark and
Hori (1995) provided compelling evidence that a recall-like mech-
anism is involved in associative-recognition decisions. Participants
in these experiments studied a list of word pairs and then com-
pleted a forced-choice associative-recognition test. Each test trial
on the recognition test involved an intact word pair (the correct
choice) and two rearranged word pairs. The experimental manip-
ulation of interest involved the degree to which the three pairs
overlapped. In the overlap condition, one of the items was com-
mon to all three pairs (e.g., study AB, CD, EF; test AB-AD-AF).
In the nonoverlap condition, individual items were unique to each
pair (e.g., study AB, CD, EF; test AB-CF-DE).

If judgments are based entirely on the sum of item and associa-
tive familiarity (as the model depicted in Figure 1 assumes), then
performance in the overlap condition should benefit from the
correlation in familiarity between the three word pairs. This pre-
diction can be derived in a formal way using familiarity-based
models like the search of associative memory model (SAM; Gil-
lund & Shiffrin, 1984) and the theory of distributed associative
memory (TODAM; Murdock, 1982), but is perhaps most easily
understood by imagining how easy the task would be if all of the
individual items (A, B, C, D, E, and F) were always exactly equal
in familiarity. In that case, the sum of item and associative infor-
mation (I + A) would always be greatest for the intact pair (AB),
and the correct answer could be given every time. If the familiarity
values for all of the items were completely uncorrelated, however,
I for a rearranged pair might sometimes exceed / + A for an intact
pair (in which case the wrong pair would be selected). The non-
overlap condition corresponds to the completely uncorrelated case,
but the overlap condition is, by design, closer to the completely
correlated case, and performance should be better as a result.
Contrary to that prediction, performance was better in the non-
overlap condition. This result suggests that the greater number of
recall cues available in the nonoverlap condition (which can be
used to reject rearranged pairs) outweighs the disadvantage of
higher variability in word-pair familiarity.

Clark and Hori (1995) noted that TODAM is the least chal-
lenged by these results because that model can at least predict
equivalent performance in the overlap and nonoverlap conditions
(rather than predicting an effect in the wrong direction) so long as
one assumes that participants ignore item information. They noted,
however, that “whether subjects actually can ignore this irrelevant
information is not known” (p. 460). Evidence bearing on this
particular issue is presented in the first three experiments reported
in this article.

Additional compelling evidence suggesting that associative-
recognition decisions are retrieval based (rather than familiarity
based) was provided by an analysis of receiver operating charac-
teristic (ROC) plots reported by Yonelinas (1997). If associative-
recognition responses are based on a continuous strength-of-
evidence variable (such as familiarity), then the shape of the ROC
should be curvilinear, as ROC plots almost always are for item
recognition. If, on the other hand, associative-recognition judg-
ments are based on an all-or-none recall process, then the shape of
the ROC should be linear. The data reported by Yonelinas (1997)
were very nearly linear, thus supporting the all-or-none retrieval

model (and contradicting the continuous strength-of-evidence
model shown in Figure 1). Indeed, Yonelinas (1997) suggested
that familiarity may not contribute at all to associative-recognition
performance, and he proposed a retrieval-based, high-threshold
account of associative-recognition performance as an alternative.
According to this account, if participants recall that the two items
of an intact pair were presented together (which occurs with
probability Ro), then they respond “yes” with high confidence. If
they do not recall that the two items of an intact pair were
presented together (which occurs with probability 1 — Ro), then
they sometimes guess “yes” (with probability g) with varying
degrees of confidence. Thus, the hit rate (H) is given by

H = Ro + (1 — Ro)g 3)

(Ro represents the probability of successful retrieval given an
“01d” pair). Similarly, if participants recall that one of the items of
a rearranged pair was presented as part of a different pair (which
occurs with probability Rr), then they say “no” with high confi-
dence. If they do not recall what either of the two items were
originally paired with (which occurs with probability 1 — Rn), then
they sometimes guess “yes,” with varying degrees of confidence
(again with probability g). Thus,

FA = (1 — Rn)g @

(Rn represents the probability of successful retrieval given a “new”
pair). Solving Equation 4 for g and substituting the result into
Equation 3 yields

H = Ro + [(1 — Rn)/(1 — Ro)]FA. (&)

This equation, which is of the form y = a + bx, implies that the
relationship between the hit rate and the false-alarm rate (i.e., the
ROC plot) will be linear, and that is exactly what Yonelinas (1997)
and, more recently, Rotello, Macmillan, and Van Tassel (2000)
found.

Whereas prior research suggested that item and associative
familiarity may combine to jointly influence associative-rec-
ognition decisions, the more recent research reviewed above sug-
gests that associative retrieval may actually play the dominant role
(cf. Westerman, 2001) and that associative information may be an
all-or-none variable. The four experiments described next were
designed to further investigate the role of item familiarity in
associative-recognition decisions and to shed additional light on
the nature and role of associative information in this task.

Experiment 1

The first three experiments are variations on the same simple
theme. In Experiment 1, which is the least complicated of the
three, participants studied a list of word pairs, some of which were
presented once (the weak pairs), and some of which were repeated
several times (the strong pairs). On the subsequent recognition test,
participants were asked to distinguish intact pairs from rearranged
pairs (and, in Experiments 2 and 3, from pair lures as well). All of
the relevant models and simple intuition suggest that participants
will exhibit a higher hit rate to strong intact word pairs relative to
weak intact word pairs. That is, according to the familiarity-based
model described earlier, repeating pairs should increase the famil-
iarity values of the individual items (/) as well as the strength of
their associative bond (A). Thus, according to Equation 1, the hit
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rate for strong pairs should exceed that of weak pairs. The
retrieval-based high-threshold model makes the same prediction.
According to that model, repeating pairs should increase the prob-
ability that the intact pair will be retrieved (Ro). As a result,
according to Equation 3, the hit rate should increase.

A question of interest in this experiment is how participants will
respond to strong versus weak rearranged word pairs. A strong
rearranged word pair consists of two items that did not appear
together but instead appeared as part of two different strong word
pairs. Thus, 7 (the familiarity value associated with the individual
items) should be high, and, according to a familiarity-based model,
the false-alarm rate to a strong rearranged pair should be corre-
spondingly high (Equation 2). According to the retrieval-based
model, by contrast, participants should be less likely to false alarm
to strong rearranged word pairs. That is, because the original word
pair was presented several times, each item of a rearranged pair
should serve as a more effective retrieval cue for the other member
of the original pair (i.e., Rn would increase). Thus, according to
Equation 4, the false-alarm rate should be low in the strong
condition.

In addition to testing these specific and contrasting predictions
of the familiarity-based and retrieval-based accounts, Experi-
ment 1 and the subsequent experiments also offer a rich array of
ROC analyses that may shed additional light on the nature of
associative information. The familiarity-based signal-detection
model regards such information as continuous in nature, which
leads to the prediction of a curvilinear ROC. The reason why a
curvilinear ROC is predicted by this model is not easy to demon-
strate mathematically (because it involves an unsolvable integral
of the Gaussian distribution). However, the fact that a nonlinear
ROC is predicted is easily appreciated by considering how the hit
rate and false-alarm rate should change as the decision criterion
moves from the far right to the far left in Figure 1. When the
criterion is extremely far to the right, the participant will respond
“no” to virtually every item, so both the hit rate and false-alarm
rate will equal zero. This yields one point on the ROC, and it falls
on the main diagonal in the lower left corner. When the criterion
is placed between the two distributions, as shown in Figure 1, the
hit rate will exceed the false-alarm rate, which yields the second
point on the ROC (and it falls above the main diagonal). Finally,
when the criterion is extremely far to the left, the participant will
respond “‘yes” to virtually every item, so both the hit rate and the
false-alarm rate will approach 1. This point again falls on the main
diagonal, but at the upper right corner of the ROC. Thus, as the
criterion sweeps from right to left, the points on the ROC trace out
a path that begins and ends on the main diagonal (beginning at the
lower left corner and ending at the upper right corner) but is some
distance away from the main diagonal at the halfway mark (when
the criterion is in the middle).

By contrast, and as indicated above, the retrieval-based high-
threshold model considers associative information to be an all-or-
none rather than a continuous variable, and, as shown by Equa-
tion 5, this model predicts a strictly linear ROC. A perennially
confusing issue in ROC analysis is that the predictions of the two
models differ depending on the details of how the ROC is con-
structed. Signal-detection theory predicts a curvilinear function,
and high-threshold theory predicts a linear function when the ROC
is constructed by plotting the hit rate versus the false-alarm rate. A
common practice is to instead construct the ROC by plotting the
z-transformed hit rate versus the z-transformed false-alarm rate

(Macmillan & Creelman, 1991). When that is done, the signal-
detection model now predicts a linear ROC, and the high-threshold
model predicts a curvilinear ROC (the exact opposite of their
predictions with respect to the untransformed ROC). Although
there are good reasons for plotting the ROC in z-transformed
coordinates (e.g., deviations from the predictions of signal-
detection theory are easier to see), all of the ROCs reported here
are presented in untransformed coordinates. We adopted that
method because the most appropriate model fitting technique
(discussed later) operates on untransformed data and because the
use of untransformed hit rates and false-alarm rates makes it easy
to understand what the numbers on the two axes of the ROC
represent.

Method

Participants. The participants were 36 undergraduates from the Uni-
versity of California, San Diego, who met the criterion of English fluency
by age 7. Their participation fulfilled a lower division psychology course
requirement.

Materials. The word pool used in all three experiments consisted
of 1,385 words drawn from The University of South Florida Word
Association, Rhyme and Word Fragment Norms (Nelson, McEvoy, &
Schreiber, 1998).

Design. Instructions and stimuli were displayed for the participant on
a color monitor. The effect of repeated study presentations on item and
associative information was investigated with the use of a yes—no recog-
nition task. During the study phase of the experiment, participants were
presented word pairs, half of which were presented once and the other half
six times each. Except as noted below, word pairs were inserted randomly
into the study list, and a different random order was used for every
participant.

Word pairs were assigned two at a time to either the intact or the
rearranged word-pair condition. If the two word pairs were designated as
rearranged word pairs, then their rightmost words were switched at the time
of testing, thereby maintaining the left-right word ordering of the pairs.
The two rearranged word pairs were inserted into the study list two at a
time, within a limited range of nine presentations. In this way, the two word
pairs would occur with, at most, seven presentations between them. The
specific range of nine presentations into which the pairs were inserted was
determined randomly for each set of word pairs (e.g., it might be the 15th
through the 23rd study presentations).

If the word pairs were to be repeatedly studied, then they were inserted
such that every repetition was spaced, on average, about nine presentations
away from the prior study of the same word pair. To accomplish this
experimental design, we instructed the computer to randomly select a range
of 54 presentations from within the study list (e.g., the 18th through the
134th presentations). This range was then divided into six blocks of nine
continuous presentations, and the two word pairs were randomly inserted
into each of the six adjacent blocks. Altogether, the study list consisted of
352 presentations. Inserted into the study list were 40 weak pairs (which
appeared once each) and 40 strong pairs (which appeared six times each).
In addition, there were 72 pairs that were not later tested (the first 12 pairs
on the list and 60 filler pairs).

After the study list was presented, participants were given a recognition
test. The recognition test included 40 intact pairs (half weak, half strong)
and 40 rearranged pairs (half weak, half strong). The various test pairs were
all randomly intermixed.

Procedure. After the participants signed a consent form and read
instructions presented on the computer monitor, the study list was pre-
sented. Pairs on the study list were presented at a rate of one item or pair
every 3 s. After the list was completed, the recognition test was presented.

For each word pair, participants were asked to decide (as quickly and
accurately as possible) whether the two words had occurred together during
the study list. For intact pairs, the correct answer was *“yes,” whereas for
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rearranged pairs, the correct answer was *“no.” Participants responded to
each recognition test item or pair by pressing one of six keys on the
keyboard that were labeled —, —, -, +, ++, and +++. These keys
represented “certain no,” “no ” “perhaps yes,
“certain yes,” respectively.

R
i

perhaps no,

» s,

yes,” and

Results and Discussion

Hit and false-alarm rate analyses. The hit rates and false-
alarm rates for each condition of Experiment 1 are reported in
Table 1. The values in this table were collapsed across all “yes”
responses, regardless of the level of confidence (“perhaps yes,”
“yes,” or “certain yes”). Unless otherwise noted, all reported
effects were significant at p < .05.

The data reveal that the strengthening manipulation had a very
large effect on the hit rate for intact pairs but virtually no effect on
the false-alarm rate for rearranged pairs. An analysis of variance
(ANOVA) performed on the data shown in Table 1 revealed a
main effect of strength (strong vs. weak), F(1, 35) = 129.13,
MSE = 0.01; a main effect of pair type (intact vs. rearranged), F(1,
35) = 173.88, MSE = 0.05; and a significant interaction, F(1,
35) = 120.62, MSE = 0.01. The small difference in the false-alarm
rate in the weak and strong conditions (.23 vs. .25) was in the
direction predicted by the familiarity-based account, but the dif-
ference did not approach significance.

Whereas the familiarity-based account (Equations 1 and 2)
predicted that the false-alarm rate to rearranged pairs would be
higher in the strong condition, the retrieval-based account (Equa-
tions 3 and 4) made the opposite prediction. Why, then, were the
false-alarm rates nearly equal, (1, 35) = 1.07; MSE = 0.01? The
simplest explanation for the present results, and the one that is the
most compatible with earlier research, is that the enhanced famil-
iarity associated with the individual items of a rearranged pair in
the strong condition was counteracted by the increased efficiency
of retrieval in that condition (which would allow participants to
reject rearranged pairs on that basis). If the opposing forces (fa-
miliarity vs. recall) were approximately equal, then they would
cancel each other out, thereby leaving the false-alarm rate to
rearranged pairs essentially unchanged. For the intact pairs, by
contrast, the two forces work in harmony, so the hit rate increased
to a considerable degree.

Some evidence in favor of this idea is provided by the confidence
ratings associated with responses made to rearranged pairs. Although
the false-alarm rates in the weak and strong conditions were essen-
tially equal, average confidence ratings were not. More specifically,
participants gave higher average confidence ratings both to their
correct “no” responses (i.e., to their correct rejections) and to their
incorrect *“yes” responses (i.e., to their false alarms) in the strong
condition. For correct “no” responses, the mean confidence ratings,
rated on a scale from 1 (low) to 3 (high), were 2.23 in the strong
condition versus 1.93 in the weak condition, #(35) = 5.00. For

Table 1
Proportion of “Yes” Responses to Each Pair Type
in Experiment 1

Pair type Weak Strong
Intact 0.54 0.89
Rearranged 0.23 0.25

incorrect “‘yes” responses, the mean ratings were 1.83 in the strong
condition versus 1.58 in the weak condition, a difference that was
marginally significant, #28) = 1.93, p = .064. Participants were
included in the latter ¢ test only if their false-alarm rates were greater
than 0 for both conditions (hence, the differing degrees of freedom for
the two tests). A participant who yields a false-alarm rate of O in one
condition provides no confidence ratings to false alarms that can be
compared with the other condition.

The higher confidence to correct “no” responses in the strong
condition presumably reflects performance on those pairs for which
retrieval was successful (which theoretically resuits in a high-
confident rejection). Successful retrieval would presumably occur
more often in the strong condition than in the weak condition. The
higher confidence to incorrect “yes” responses in the strong condition
may reflect performance on those pairs for which retrieval was un-
successful but item familiarity was very high. High item familiarity is
something that would also occur more often in the strong condition. A
formal specification of this model is presented below as part of our
discussion of the ROC data. Other explanations of the equivalent
false-alarm rates in the weak and strong conditions are possible, and
some of these are tested in the ensuing experiments. For the moment,
however, we turn to the ROC analyses to see what new information
they may provide.

ROC analyses. The confidence ratings that participants sup-
plied for each recognition decision can be used to construct
confidence-based ROC plots (e.g., Macmillan & Creelman, 1991;
Stretch & Wixted, 1998; Yonelinas, 1997). Prior work by Yoneli-
nas (1997) suggests that the ROC plots for associative recognition
(intact vs. rearranged) will be linear in accordance with Equa-
tion 5. The conditions studied by Yonelinas most closely match the
weak condition here, but the high-threshold model predicts a linear
ROC in the strong condition as well. Presumably, both Ro and Rn
(the probabilities of successful retrieval for “old” intact and *“new”
rearranged pairs, respectively) in Equation 5 will be higher in the
strong condition than in the weak condition, but the form of the
ROC function would not be expected to change.

Figure 2 presents the relevant ROC data for the weak and strong
conditions. The ROC in the upper panel shows the weak intact
pairs versus the weak rearranged pairs, whereas the lower panel
shows the strong intact pairs versus the strong rearranged pairs.
We created these plots by pooling confidence data over partici-
pants, and then fit the ROCs by the two-parameter high-threshold
model (the parameters being Ro and Rr) and by the two-parameter
signal-detection model (with one parameter representing the dis-
tance between the two distributions and the other representing their
relative standard deviations).

The data were pooled over participants because individual par-
ticipants did not yield enough data from each condition to produce
a meaningful ROC. In previous research in which similar pooling
was involved, conclusions based on pooled ROC analyses corre-
sponded to conclusions based on individual participant ROC anal-
ysis (e.g., Ratcliff, Sheu, & Gronlund, 1992; Stretch & Wixted,
1998; Yonelinas, 1997). We address this issue empirically in
Experiment 4 and arrive at the same conclusion, but for now we
analyze pooled data.

We used the maximum likelihood estimation procedure de-
scribed by Ogilvie and Creelman (1968) to fit the ROC data,
except that for the signal-detection fits, we used a close approxi-
mation of the cumulative Gaussian (taken from Abramowitz &
Stegun, 1970) instead of the somewhat less accurate logistic ap-
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Figure 2. Confidence-based intact-versus-rearranged receiver operating
characteristic plots for the weak and strong conditions of Experiment 1
(upper and lower panels, respectively). In both graphs, the dashed line
indicates the maximum likelihood fit of the high-threshold model and the
solid curve indicates the maximum likelihood fit of the signal-detection
model. The high-threshold model does not provide a good visual fit in the
strong condition because the data points are associated with different
numbers of observations, and points with more observations exert a greater
influence on the fit than those with fewer observations.

proximation.” Whereas the high-threshold fits involved estimating
two retrieval parameters, Ro and Rn, the signal-detection fits
involved estimating two distributional parameters, d, and r. The
parameter d, is a measure analogous to 4’ that takes into account
unequal variances, whereas r represents the standard deviation of
the lure distribution divided by the standard deviation of the target
distribution. If r is less than 1, as it usually is (e.g., Ratcliff et al.,
1992), then the standard deviation of the signal (e.g., intact)
distribution is greater than that of the noise (e.g., rearranged)
distribution. For the intact and rearranged distributions shown in
Figure 1, r would equal 1 because the two distributions have the
same standard deviation.

As a technical aside, we note that if the models were fit to the
empirical ROCs by the method of least squares, then, as just
indicated, two parameters would be estimated for each model.
Although a least-squares fit is usually adequate in practice, that
approach is theoretically problematic because it assumes measure-
ment error in the vertical direction only. In reality, both measures
of an ROC (i.e., the hit rate and the false-alarm rate) are associated
with error variance. For this reason, maximum likelihood estima-
tion is a better option (Ogilvie & Creelman, 1968), and it is the
option we used. This method actually involves estimating seven
parameters for each fit, not two, because five confidence criteria
(for the detection fits) or five confidence-specific guessing prob-
abilities (for the high-threshold fits) are also estimated. Because
the estimated values of the confidence and guessing parameters are
not of theoretical interest and do not determine the shape of the
ROC in any way (which is why a two-parameter least-squares fit
of ROC data is possible), only the estimates of the two defining
parameters of each model are reported.

Table 2 presents the best fitting parameters and chi-square
goodness-of-fit statistics for both models. A significant chi-square
indicates that the deviations are greater than would be expected on
the basis of chance (i.e., the larger the chi-square, the poorer the
fit).3 In the weak condition, neither model provides an excellent fit,
with both yielding a chi-square value of about 15. The expected
chi-square value for 3 degrees of freedom is 3, so both models
show significant deviations. Essentially, as is evident in Figure 2,
the weak ROC is more linear than the detection model predicts and
is more curvilinear than the high-threshold model predicts. Al-
though it has been shown before by Yonelinas (1997), the fact that
the high-threshold model rivals (and even slightly outperforms) the
detection model in associative recognition is remarkable, consid-
ering that in item-recognition tasks, detection theory invariably
enjoys a strong advantage (as we shall see again in the next two
experiments). Thus, although the ROCs were not perfectly linear,
the results from the weak condition largely replicate the results
reported by Yonelinas.

As noted by Yonelinas (1997), the high-threshold model does
not need to assume any role for familiarity. However, the equiv-
alent false-alarm rates for weak and strong rearranged pairs shown
in Table 1 raise the possibility that familiarity for the individual
items is being taken into account and that it is being offset by
retrieval (at least, that is the simplest explanation for this finding).
How can this idea be reconciled with a linear ROC?

Whereas the retrieval-based high-threshold model that predicts a
linear ROC must assume that continuously distributed associative

2 The fits were also performed using the logistic approximation, and the
differences were, for the most part, negligible.

3 It is difficult to know what effect pooling data over participants has on
the alpha level for the chi-square test, and that uncertainty should be kept
in mind when considering the reported chi-square values. Simulations
described later suggest that the impact is not extreme, but the issue was not
formally investigated here. The most conservative approach would be to
compare the relative chi-square values produced by the competing models
without giving too much weight to whether deviations from a particular
model are significant.
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Table 2

Maximum Likelihood Parameter Estimates and Chi-Square
Goodness-of-Fit Statistics for the Signal-Detection and High-
Threshold Models Fit to the Intact Versus Rearranged

ROC Data From Experiment 1

Condition Model pi p2 X daf
Weak Detection 0.735 0.875 15.61* 3
Threshold 0.310 0.152 14.42* 3

Strong Detection 0.864 1.912 3.08 3
Threshold 0.658 0.375 79.89%* 3

Note. For the detection model, pt = r and p2 = d,. For the threshold
model, pl = Ro and p2 = Rn. For 3 degrees of freedom, a chi-square value
of 7.81 is significant at the .05 level. N = 1440 for all chi-square tests.
ROC = receiver operating characteristic.

*p < .05.

familiarity (A) plays no role (because associative familiarity would
introduce curvilinearity), it need not assume that item familiarity
(D) plays no role. In fact, if retrieval fails, participants may respond
“yes” if the combined familiarity of the individual items exceeds a
decision criterion (cf. Mandler, 1980). According to this idea, the
hit rate and false-alarm rate would be as follows:

H = Ro+ (1 — Ro)p(I> c) and (6)
FA = (1 ~ Rn)p(I> o), €))

where p(I > c¢) represents the probability that item familiarity
exceeds a decision criterion. Solving Equation 7 for p(I > ¢) and
substituting the result into Equation 6 yields Equation 5, so this
model still predicts a linear ROC. However, unlike the original
retrieval-based model, the new model asshmes that participants do
take item familiarity into account in deciding whether or not a pair
was previously encountered (even though there is no reason why
they should). What is regarded as “guessing” in the standard model
is actually responding on the basis of item familiarity in this
slightly revised model.

The simple model expressed in Equations 6 and 7 is consistent
with all of the available data discussed so far. Equation 7, for
example, predicts the offsetting effects for rearranged word pairs
when conditions change from weak to strong. That is, as strength
increases, Rn will increase such that the first term in Equation 7,
1 — Rn, will decrease. However, the second term, p(I > ¢), will
increase, serving to offset the retrieval advantage. In addition, this
model is compatible with (a) prior research by Hockley (1992) and
Nairne (1983) that supported a role for item familiarity, (b) prior
research by Clark and Hori (1995) that supported a role for
retrieval, (c) the linear ROCs reported by Yonelinas (1997), and
(d) the somewhat linear ROC obtained in the weak condition here.
The slight deviations from linearity we observed are admittedly
not consistent with this account.

If the high-threshold model represented by Equations 4 and 5 (or
the elaborated version of it represented by Equations 6 and 7) is
correct, then the linear ROC observed in the weak condition should
be observed in the strong condition as well. Completely contrary to
this prediction, however, the ROC for the strong condition shown
in the lower panel of Figure 2 is clearly curvilinear. The goodness-
of-fit measures shown in Table 2 reveal that the high-threshold
model offers an extremely poor fit, which statistically confirms

what is visually apparent. It is important to note that the line
produced by the best-fitting high-threshold model does not pass
through the ROC points in a way that intuition suggests that it
should because the points are not given equal weight in the
maximum likelihood fits (and the line tries to deviate less from
points that are based on more observations). In contrast to the
high-threshold model, the signal-detection model offers an excel-
lent fit, and no systematic deviations are apparent (points with
more observations were given more weight in these fits as well).
Moreover, the obtained value of r in the strong condition increased
considerably relative to the weak condition and is closer to 1 than
is usually the case in recognition memory (cf. Ratcliff et al., 1992;
Stretch & Wixted, 1998). In fact, a fit of the one-parameter
detection model with r fixed at 1 still yielded a nonsignificant
chi-square, x*(4, N = 1440) = 6.74, and the fit was not signifi-
cantly improved by allowing r to take on a value less than 1. By
way of comparison, forcing r to assume a value of 1 in the weak
condition yielded a significantly worse fit by far compared with
when r was free to vary.

What this result suggests is that there may be something wrong
with even the modified model represented by Equations 6 and 7.
What could explain the apparent transformation of a nearly linear
ROC into a clearly curvilinear ROC when strength is increased? A
possible solution to this puzzle, which we simply mention briefly
here and then work out in more detail later, is that associative
information is not all or none (as the high-threshold account
assumes) but is instead better regarded as some or none. That is, in
agreement with the high-threshold view, a participant may fail to
retrieve any associative information for a given pair (none). How-
ever, in contrast to the high-threshold view, participants may
retrieve associative information to varying degrees (some). Ac-
cording to this idea, associative information, when it is available,
is a continuous variable like item familiarity is. Unlike item
familiarity, associative information is not always available. How
this idea can simultaneously explain a (nearly) linear ROC in the
weak condition that becomes a symmetric curvilinear ROC in the
strong condition is discussed in more detail after presenting addi-
tional relevant information provided by the next two experiments.

Experiment 2

Experiment 2 was similar to Experiment 1 in that participants
studied both weak and strong word pairs and were later presented
with a recognition test in which they were asked to discriminate
between pairs that were intact and pairs that were rearranged.
Thus, part of the purpose of Experiment 2 was to replicate the
equivalent false-alarm rates in the weak and strong conditions as
well as the curious ROC results in those two conditions. In
addition, the recognition test now included pair lures (i.e., pairs
comprised of items not previously encountered during the exper-
imental session) as well. Unlike rearranged pairs, which may elicit
the retrieval of associative information, pair lures must be judged
without the benefit of any associative information.

The inclusion of pair lures offers several useful pieces of infor-
mation. For example, one possible explanation for the equivalent
false-alarm rates observed in Experiment 1 is that participants
simply ignore item familiarity (so there is no upward pressure on
the false-alarm rate in the strong condition) and do not rely on
recollection to reject rearranged pairs (so there is no downward
pressure either). Instead, participants might respond entirely on the
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Table 3
Proportion of “Yes” Responses to Each Pair Type and Item
Type in Experiment 2

Pair and item type Weak Strong
Pairs
Intact 0.56 0.84
Rearranged 0.23 0.26
Pair lure 0.07
Items
Item target 0.61 0.86
Item lure 0.31

basis of the associative familiarity of a word pair. If so, then one
might expect the false-alarm rate to rearranged pairs to equal that
of pair lures. In both cases, associative information is absent
(except, perhaps, for random-associative noise) and, if item infor-
mation is ignored as well, there is no reason to expect differing
false-alarm rates. Also, as described in more detail later, the
inclusion of pair lures allows one to test the variability of asso-
ciative information (if that information is indeed continuously
distributed) relative to the variability of item information. This can
be done, for example, by constructing an ROC consisting of intact
pairs versus pair lures. Finally, for comparative purposes, Exper-
iment 2 also included individual items on the study list as well as
individual item lures on the recognition test.

Method

Participants. 'The participants were 30 undergraduates from the Uni-
versity of California, San Diego, who met the criterion of English fluency
by age 7. Their participation fulfilled a lower division psychology course
requirement.

Materials.
periment 1.

Design and procedure. The design and procedure were similar to
Experiment 1, except that individual items (both weak and strong) also
appeared on the study list, and the recognition test involved intact and
rearranged pairs (as before) as well as item targets, item lures, and pair
lures. Strengthened items were randomly inserted into the study list in a
manner similar to the strengthened pairs (i.e., six insertions spaced an
average of nine study presentations apart).

The study list consisted of 380 presentations. Inserted into the study list
were 32 strong pairs, 16 strong items, 32 weak pairs, and 16 weak items.
An additional 32 study pairs served as fillers and were not later tested (the
first 12 pairs of the list were also not tested).

After the study list was presented, participants were given a recognition
test. The recognition test included 32 intact pairs (half weak, half
strong), 32 rearranged pairs (half weak, half strong), and 32 target items
(half weak, half strong). Also included were 64 pair lures (neither word
previously studied) and 32 item lures (nonpreviously studied words). The
various test items were all randomly intermixed. On the recognition test,
participants were instructed to say “yes” both to pairs they had seen appear
together on the list and to items that had appeared on the list.

The word stimuli were the same as those used in Ex-

Results and Discussion

Hit and false-alarm rate analyses. The hit rates and false-
alarm rates for each condition of Experiment 2 are reported in
Table 3. The values in this table were again collapsed across all

“yes” responses regardiess of the level of confidence (“perhaps
yes,” “yes,” or “certain yes”). The data once again reveal that the
strengthening manipulation had a very large effect on the hit rate
for intact pairs but virtually no effect on the false-alarm rate for
rearranged pairs. An ANOVA performed on the data shown in
Table 3 revealed a main effect of strength (strong vs. weak), F(1,
29) = 51.11, MSE = 0.01, a main effect of pair type (intact vs.
rearranged), F(1, 29) = 93.45, MSE = 0.07, and a significant
interaction F(1, 29) = 27.61, MSE = 0.01. As before, the small
difference in the false-alarm rate in the weak and strong conditions
(.23 vs. .26) was in the direction predicted by the familiarity-based
account, but the difference did not approach significance F(1,
29) < 1, MSE = 0.01. For the items, the hit rate to the strong items
was, not surprising, significantly greater than the hit rate to the
weak items, F(1, 29) = 70.15, MSE = 0.01.

As indicated earlier, one possible explanation for the equivalent
false-alarm rates to weak and strong rearranged pairs is that item
familiarity was ignored altogether and responding was based en-
tirely on the presence or absence of associative familiarity (i.e., the
familiarity of the word pair). Because a rearranged word pair is
equally lacking in associative familiarity whether items were seen
once or many times, the false-alarm rate would be unaffected.
However, some evidence against this possibility is provided by a
comparison of the false-alarm rates to rearranged word pairs and to
pair lures in Table 3. Specifically, the false-alarm rate to weak
rearranged word pairs was significantly higher than the false-alarm
rate to pair lures, F(1, 29) = 59.35, MSE = 0.01, even though
associative information is lacking for both. Thus, the difference in
false-alarm rate here may indicate that participants responded
differentially to these pairs on the basis of differences in item
familiarity (which would be higher for rearranged pairs).

An alternative possibility is that participants attended to item
familiarity (thereby accounting for the false-alarm rate difference
between rearranged pairs and pair lures) but that item familiarity,
which increases when a word pair is first presented, did not further
increase when the pairs were repeated in the strong condition. If
participants were somehow able to focus their efforts entirely on
strengthening the associative bond (A) when a pair was seen for
the second or third time without further strengthening item infor-
mation (i.e., without increasing I), then the familiarity-based
model predicts equivalent false-alarm rates. This possibility is
tested in Experiment 3, which, unlike Experiment 2, tested item
recognition for items that originally appeared as a member of a
weak or strong pair (in Experiment 2, the individual test items
appeared as individual items on the study list). While this is a
possibility that needs to be tested, the simplest explanation for the
present results is, once again, that the enhanced familiarity asso-
ciated with the individual items of a rearranged pair in the strong
condition was counteracted by the increased efficiency of retrieval
in that condition. If the opposing forces were approximately equal,
then they would cancel each other, thereby leaving the false-alarm
rate to rearranged pairs essentially unchanged.

The confidence ratings to responses made to rearranged pairs
again support this view. Even though the false-alarm rates to weak
and strong rearranged pairs were the same, participants were again
more confident in both their correct “no” and incorrect “yes”
responses to strong rearranged pairs. The mean confidence rating
to correct “no” responses was 2.36 in the strong condition ver-
sus 2.19 in the weak condition, #(29) = 3.48, whereas the mean
confidence rating to incorrect “yes” responses was 2.17 in the
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Figure 3. Confidence-based receiver operating characteristic plots for the
weak (left panel) and strong (right panel) conditions of Experiment 2. The
upper panel plots performance for intact versus rearranged pairs, the
second panel from the top plots performance for intact pairs versus pair
lures, the third panel plots performance for intact versus rearranged pairs,
and the bottom panel plots performance for items versus item lures. In each
graph, the dashed line indicates the maximum likelihood fit of the high-
threshold model and the solid curve indicates the maximum likelihood fit
of the signal-detection model.

strong condition versus 1.89 in the weak condition, #25) = 2.37.
As indicated earlier, the higher confidence to correct “no” re-
sponses presumably reflects the influence of those pairs for which
retrieval was successful, which is more likely to occur in the strong
condition. The higher confidence to incorrect “yes” responses in
the strong condition may reflect the influence of those pairs for
which retrieval was unsuccessful but item familiarity was very
high (because the items had been seen repeatedly on the study list).

ROC analyses. Figure 3 presents the relevant ROC data for the
weak and strong conditions, respectively, and Table 4 presents
the maximum likelihood parameter estimates and chi-square
goodness-of-fit statistics for the two-parameter high-threshold
model (based on Equations 4 and 5) and for the two-parameter
signal-detection model. These ROCs were constructed and ana-
lyzed in the same manner as those in Experiment 1.

The upper panel of Figure 3 shows the ROC results for intact
versus rearranged pairs from the weak (upper left) and strong
(upper right) conditions. The plot for the weak condition, which

corresponds most closely to the conditions studied by Yonelinas
(1997), is again equally well fit by both the signal-detection model
and the high-threshold model. Although the data do not deviate
significantly from either model, the results are probably best
described as falling between the predictions of the two models.
That is, deviations from the best fitting high-threshold model are in
the direction predicted by signal-detection theory and vice versa.

Once again, however, the ROC for the strong condition is
undeniably curvilinear. The results shown in Table 4 confirm what
is visually apparent, namely, that the linear high-threshold model
provides an extremely poor fit. On the other hand, the detection
model again provides an excellent fit, and, again, the estimated
value of r is sufficiently close to 1 that an equal-variance model
may apply. Indeed, the fit of a one-parameter detection model
(with r fixed at 1) to the strong intact-versus-rearranged ROC
yields an overall chi-square with 4 degrees of freedom that is still
not significant, y*(4, N = 1440) = 2.37, so, obviously, the fit is
not significantly improved by allowing r to vary. It is curious, and
presumably theoretically significant, that the mere act of strength-
ening pairs transforms a nearly linear ROC (something not often
seen in recognition tasks) into a curvilinear ROC that is adequately
described by an equal-variance detection model (something that is
also not often seen in recognition). As indicated earlier, recogni-
tion memory ROCs are typically curvilinear and are invariably
best fit by an unequal variance detection model (e.g., Ratcliff et al.,
1992).

The ROC plots shown in the second panel from the top in
Figure 3 are similar to those shown in the top panel in that the hit
rates are based on responses to intact weak and strong pairs (as
before). The difference is that the false-alarm rates are now based
on responses to lures that consisted of a pair of new items (i.e., the
pair lures). If associative-recognition decisions are based on re-
trieval or, in the absence of retrieval, guessing, then it could be
argued that these ROC plots ought to be linear. That is, as indi-
cated earlier, Equation 3 states that the hit rate for intact pairs is
equal to Ro + (1 ~— Ro)g. What is the corresponding false-alarm
rate equation for pair lures? Whereas the false-alarm rate to rear-
ranged pairs is, according to Equation 4, (1 — Rn)g, the false-alarm
rate for pair lures is, perhaps, simply equal to g (i.e., no retrieval
information is available for these pairs, so participants must always
guess). Thus, if H = Ro + (1 — Ro)g and FA = g, then the
predicted relationship between H and FA (i.e., the ROC plot) is
H = Ro + (1 — Ro)FA, which is a linear function.

On the other hand, one need not assume that the probability of
guessing “yes” to a pair lure is the same as the probability of
guessing “yes” to an intact or rearranged pair for which no re-
trieval information is available. Indeed, the fact that the false-
alarm rates to pair lures are much lower than that of the rearranged
pairs already shows that the guessing rates must differ. If they did
not, then the false-alarm rate pattern would actually be reversed
because (1 — Rn)g, the predicted false-alarm rate to rearranged
pairs, is less than g, the predicted false-alarm rate to pair lures. It
is perhaps not surprising, then, that fits of this version of the linear
high-threshold model to the obviously nonlinear pair-lure ROCs
were extremely poor (and are not discussed further).

Within the high-threshold framework, the problem of differen-
tial guessing rates is easily resolved by assuming that guessing
rates are determined by item familiarity, as in Equations 6 and 7.
Because the items of an intact or rearranged pair are more familiar
than those of a pair lure, a higher rate of guessing for those pairs
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Table 4

Maximum Likelihood Parameter Estimates and Chi-Square Goodness-of-Fit Statistics for the
Signal-Detection and High-Threshold Models Fit to the ROC Data From Experiment 2

Condition Model pl p2 ¥ df
Intact vs. rearranged®
Weak Detection 0.672 0.847 5.18 3
Threshold 0.358 0.149 6.59 3
Strong Detection 0.867 1.690 045 3
Threshold 0.656 0.367 15.45* 3
Intact vs. pair lure®
Weak Detection 0511 1.166 4.84 3
Threshold 0.379 0.651 17.44* 3
Strong Detection 0.484 2231 1.27 3
Threshold 0.666 1.277 12.66* 3
Rearranged vs. pair lure®
Weak Detection 0.750 0.285 11.01%* 3
Threshold 0.233 0.788 12.75* 3
Strong Detection 0.547 0.096 5.07 3
Threshold 0.381 1.132 17.63* 3
Item target vs. item lure®
Weak Detection 0.752 0.793 4.86 3
Threshold 0.206 0.495 7.70 3
Strong Detection 0.678 1.604 4.62 3
Threshold 0.434 1.053 12.70* 3
Note. For all fits of the detection model, pl = r and p2 = d,. For the threshold model, pl = Ro and p2 = Rn

for the intact vs. rearranged fits; p1 = Ro and p2 = d’ for the intact vs. pair lure and item vs. item lure fits, and
pl = Rn and p2 = d’ for the rearranged vs. pair lure fits. For 3 degrees of freedom, a chi-square value of 7.81
is significant at the .05 level. ROC = receiver operating characteristic.

SN = 960. ®N = 2400,

*p < .05.

°N = 1440.

would not be surprising. Thus, when fitting the high-threshold
model to the intact versus pair-lure ROCs, we assumed that the hit
rate was governed by Equation 6 (rather than Equation 4), and that
the false-alarm rate was equal to the probability that item famil-
iarity exceeded the decision criterion, p(lp; > c), where Ip
represents the familiarity of the items of a pair lure. This predicted
false-alarm rate corresponds to Equation 7, except that retrieval is
not assumed to play a role, so Rn is set to 0.

On any trial in which retrieval played no role (i.e., on all trials
involving pair lures and on a subset of trials involving intact pairs),
item familiarity was assumed to determine the level of confidence
in accordance with a standard signal-detection model. As usual,
the relevant item familiarity values were assumed to be normally
distributed. For the pair lures, the item familiarity distribution was
arbitrarily set to a mean of 0 and a standard deviation of 1. For the
intact pairs, the item familiarity distribution had a mean of 4’
(reflecting higher mean familiarity for these items) and a standard
deviation of 1, where d' was a parameter estimated from the data.
It is important to note that for these fits, this parameter actually is
d’, not d,, because an equal-variance model is assumed (allowing
for unequal variances here is possible but would introduce a third
free parameter).

As an aside, it should be noted that the linear high-threshold
model that was fit to the intact versus rearranged ROCs could be
derived either from Equations 4 and 5 or from Equations 6 and 7.
Because the item familiarities are presumably equal for both intact
and rearranged pairs, the term p(I > ¢) in Equations 6 and 7 are
equal, so this aspect of the equation simply divides out (such that
the predicted ROC is strictly linear, as shown by Equation 5). For
the ROCs involving pair lures, on the other hand, the version of the

high-threshold model that aliows for differing levels of item fa-
miliarity predicts a curvilinear ROC with a y-intercept greater
than O (whereas the curvilinear path predicted by signal-detection
theory has a y-intercept of 0).

The two parameters of interest in the intact versus pair-lure
ROC fits were Ro and d’ (although, as in all of these maximum
likelihood fits, seven parameters were actually estimated, includ-
ing the five confidence criteria). As is evident from Figure 3, this
version of the high-threshold model offered a reasonably accurate
fit, and it is difficult to distinguish the threshold and detection
models on these grounds alone. As shown in Table 4, the fit of the
high-threshold model was statistically somewhat less accurate than
that provided by the detection model. Whereas the deviations from
the best-fitting detection model were not significant in either
condition, the deviations from the threshold model were significant
in both conditions. In spite of the significant deviations from the
high-threshold model, the estimates of the parameter, Ro, in both
strength conditions are reasonably close to the corresponding
estimates of Ro obtained from the intact versus rearranged fits.
This is as it should be, because they are redundant estimates of
how often retrieval occurred for the intact pairs.

With regard to the signal-detection parameter estimates, the
most important finding may be that the ratio of noise-to-signal
distribution standard deviations (i.e., r) was approximately 0.5.
Interpreted in terms of signal-detection theory, this result suggests
that the standard deviation of the intact-pair distribution is twice
that of the pair-lure distribution. This represents yet another ROC
result rarely seen in recognition memory, for which r values are
almost always in the .70 to .80 range (Ratcliff et al., 1992).
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The next panel of ROC plots is similar, except that now the
rearranged pairs represent the “signal” distribution, and the pair
lures again represent the “noise” distribution. Although the correct
answer is “no” to both kinds of pairs, the false-alarm rate was
higher for rearranged pairs, so these pairs can be regarded as the
signal distribution for analytic purposes. The high-threshold fits
were performed in the same way they were for the intact versus
pair-lure ROCs, except that the hit rate was given by Equation 7
rather than Equation 6. Thus, the two parameters of interest are Rn
and d’. The chi-square goodness-of-fit statistics shown in Table 4
reveal that the models provided comparable fits in the weak
condition (with deviations from the best-fitting models significant
in both cases), but the detection model provided a better fit than the
high-threshold model in the strong condition. Visually, the fits
appear to be comparable, although systematic deviations from the
best fitting threshold model are discernable in the strong condition.
Even so, the estimates of the high-threshold parameter, Rn, in both
strength conditions (Parameter pl in Table 4) are reasonably close
to the corresponding estimates of Rn obtained from the intact
versus rearranged fits (Parameter p2 in Table 4). This would be
expected because, from the high-threshold theory point of view,
these are redundant estimates (both estimating how often retrieval
succeeded for rearranged pairs). The estimates of 4’ from the fits
of the high-threshold model to the intact versus pair-lure ROCs
(Parameter p2 in Table 4) should also roughly equal the corre-
sponding estimates of d’ from the fits of the high-threshold model
to the rearranged versus pair-lure ROCs (also Parameter p2 in
Table 4). In both cases, this parameter theoretically captures the
familiarity of the items, which should be equal for intact and
rearranged pairs. As shown in Table 4, the estimates are reason-
ably similar.

The best fitting detection model again implies that the variance
of the rearranged distribution is much greater than that of the
pair-lure distribution, especially in the strong condition. Thus,
from the point of view of signal-detection theory, this result
suggests that a distribution of evidence values that involves asso-
ciative information (the intact distribution or the rearranged dis-
tribution) is much more variable than a distribution of evidence
values that does not involve associative information (the pair-lure
distribution).

The lower panel of Figure 3 presents the data for the weak
(lower left) and strong (lower right) items versus item lures. These
were included as a check to see whether our participants yielded
typical data with respect to individual items, and, indeed, they did.
The items exhibit the expected curvilinearity in both the weak and
strong conditions. A linear high-threshold model would obviously
not fit these data well, and no one advocates such a model for
item-recognition memory anymore. A more viable version of the
high-threshold account relies on the exact same logic that was just
applied to the intact versus pair lure ROCs. That is, as argued by
Yonelinas (1997), a response to an individual target item may be
based on retrieval or, in the absence of retrieval, familiarity (which
helps to distinguish targets from lures, because targets are associ-
ated with higher levels of familiarity). For lures, by contrast,
responding would be based entirely on familiarity, as retrieval
plays no role. If one assumes an equal-variance signal-detection
model for the subset of trials based on familiarity, which is what
Yonelinas assumed for item ROCs, then the model we fit to the
intact versus pair-lure ROCs is the same high-threshold model that
applies here. As shown in Table 4, this version of the high-

threshold model provides a fit that is comparable with that of the
detection model in the weak condition (and obtained deviations are
not significant in either case) and is somewhat inferior to that of
the detection mode! in the strong condition. Visually, the fit of the
high-threshold model is quite good in both conditions. However,
small but systematic deviations are apparent in the strong
condition.

Finally, for the item ROCs, the best-fitting detection model
implies that the variance of the target distribution is somewhat
greater than that of the lure distribution, which is the usual
finding (i.e., r is usually in the .7 to .8 range). Unlike the strong
intact-versus-rearranged ROC, forcing the value of r to equal 1
for the item ROC fits yielded very poor (and significantly
worse) fits compared with when r was free to assume a value
less than 1. The goodness-of-fit statistics for the fits with r
fixed at 1 were x*(4, N = 1440) = 30.78 and x°(4, N =
1440) = 44.68 (both highly significant) for the weak and strong
fits, respectively. The fact that an equal-variance detection
model can be rejected for item recognition is well known
(Ratcliff et al., 1992).

Experiment 3

Experiment 3 was designed to replicate all of the major effects
of Experiments 1 and 2 (especially the ROC results just discussed)
and to evaluate one possible alternative explanation for the equiv-
alent false-alarm rates to the weak and strong rearranged pairs.
More specifically, this experiment provided a more direct test of
the idea that repeating pairs not only strengthens memory for the
association but also increases the familiarity of the two items
comprising the pair.

In Experiment 2, the strong and weak items that appeared on
the recognition test had appeared as individual items on the
study list. Thus, the individual items from strong and weak
pairs were never tested individually to ensure that item famil-
iarity was higher in strong pairs than in weak pairs. If item
familiarity did not increase as a result of repeating pairs (e.g.,
if participants were able to concentrate mainly on strengthening
the associative connection between items when the pair was
repeated), then that might explain why the false-alarm rates for
weak and strong rearranged pairs were equivalent in Experi-
ments 1 and 2.

If the familiarity of individual items does increase when pairs
are repeated (as one would naturally expect), then the hit rate for
items drawn from strong pairs should exceed the hit rate of items
drawn from weak pairs. On the other hand, the mere fact that the
hit rate for strong items exceeds that of weak items does not prove
that increased item familiarity is responsible. It could be increased
by all-or-none retrieval (such that participants would respond
“yes” if they retrieved the member with which the item was
originally paired). An analysis of the relevant ROC data may help
to shed light on this issue. If all-or-none retrieval operates to a
greater extent for items that were studied as part of a pair than for
items that were studied individually, then the fit of the high-
threshold model to the ROC data from this condition might be
expected to yield higher estimates of Ro compared with the fit for
items that were studied individually. This is not a necessary
prediction of the high-threshold account (i.e., all-or-none retrieval
may be equally involved whether items are presented as part of a
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pair or individually), but such a result would seem to fit naturally
with that account.

Method

Participants. The participants were 30 undergraduates from the Uni-
versity of California, San Diego, who met the criterion of English fluency
by age 7. Their participation fulfilled a lower division psychology course
requirement.

Design and procedure. The design was identical to that of Experi-
ment 1, except that the precise mix of item types differed slightly (as noted
beiow), and half of the tested individual words were drawn from word-pair
study presentations. The other half were from study presentations of
individual words. The study list consisted of 312 presentations, followed
by the test list, which consisted of 160 presentations. The recognition test
included 20 intact word pairs (half weak, half strong), 20 rearranged word
pairs (half strong, half weak), 20 items drawn from word pairs (half strong,
half weak), and 20 items studied as items (half strong, half weak). Tests of
items drawn from word-pair study presentations were equally likely to be
either the left or the right word (the other word in the word pair was not
tested). The recognition test also included 40 pair lures and 40 item lures.
The first 12 study presentations were not later tested. On the recognition
test, participants were instructed to say “yes” to intact pairs and to items
they recognized as having been seen on the list (they were not specifically
informed that some items from pairs would be tested as items on the
recognition test).

Results and Discussion

Hit and false-alarm rate analyses. The hit rate and false-alarm
rate for each condition of Experiment 3 are reported in Table 5.
The values in this table were once again collapsed across all “yes”
responses regardless of the level of confidence (“perhaps yes,”
“yes,” or “certain yes”). The results presented in Table 5 show yet
again that the strengthening manipulation had a very large effect
on the hit rate for intact pairs but almost no effect on the false-
alarm rate for rearranged pairs. An ANOVA performed on the data
presented in Table 5 revealed a main effect of strength (strong vs.
weak), F(1, 29) = 36.99, MSE = 0.02, a main effect of pair type
(intact vs. rearranged), F(1, 29) = 125.39, MSE = 0.06, and a
significant interaction, F(1, 29) = 27.86, MSE = 0.02. As in
Experiments 1 and 2, the small difference in false-alarm rates to
weak and strong rearranged pairs (.23 vs. .25) was in the direction
predicted by the familiarity-based model, but the difference did not
approach significance, F(1, 29) < 1, MSE = 0.02.

Table 5
Proportion of “Yes” Responses to Each Pair Type and
Item Type in Experiment 3

Pair and item type Weak Strong
Pairs
Intact 0.58 0.88
Rearranged 0.23 0.25
Pair lure 0.06
Items
Item target 0.63 0.91
Item from pair 0.53 0.73
Item lure 0.34

The confidence ratings to responses made to rearranged pairs
are again consistent with the idea that the enhanced familiarity
associated with the individual items of a rearranged pair in the
strong condition was counteracted by the increased efficiency of
retrieval in that condition. Although the false-alarm rates were
equal in the weak and strong conditions, participants were again
more confident in their correct “no” responses to strong rearranged
pairs (2.39 in the strong condition vs. 2.24 in the weak condition),
and they were also more confident in their incorrect “yes” re-
sponses to strong rearranged pairs (2.15 in the strong condition
vs. 1.94 in the weak condition). The effects in this experiment were
not significant, #(29) = 1.87, p = .071, and #(25) = 1.28, p = .215,
for “yes” and “no” responses, respectively, but that may not be
surprising, given that only 10 observations were taken from each
participant to weak and strong rearranged pairs because of the
many conditions involved (whereas 20 and 16 observations were
taken from each participant in the corresponding conditions of
Experiments 2 and 3, respectively).

Item information again significantly influenced associative-
recognition judgments. The false-alarm rate to weak rearranged
pairs was higher than the false-alarm rate to pair lures, F(1,
30) = 60.33, MSE = 0.01. This finding again suggests that
presenting items once as part of a pair increases their familiarity
above that of nonpresented items and that participants were taking
into account item information when making associative-
recognition decisions. In addition, pairs that were presented more
than once apparently increased item familiarity still further. Spe-
cifically, items that were drawn from strong pairs were associated
with a much higher hit rate than were items that were drawn from
weak pairs, F(1, 30) = 2493, MSE = 0.02. As indicated earlier,
this higher hit rate might reflect increased familiarity for those
items, or it might reflect an enhanced retrieval process (i.e., par-
ticipants may have responded “yes” to the item if they could
retrieve the item with which it was paired during study). Although
all-or-none retrieval may also play an important role for the items
that appeared individually on the study list, it seems reasonable to
assume that if retrieval does play an important role in item recog-
nition, it would be more pronounced for items that originally
appeared as part of a pair. The ROC analyses presented below bear
on this issue.

ROC analyses. Figure 4 presents the relevant ROC data for the
weak and strong conditions, respectively, and Table 6 presents the
maximum likelihood parameter estimates and chi-square
goodness-of-fit statistics for the two-parameter high-threshold
model and for the two-parameter signal-detection model.

The upper panel of Figure 4 shows the ROC results for intact
versus rearranged pairs from the weak (left) and strong (right) con-
ditions. These results differ somewhat from those of Experiments 1
and 2. The plot for the weak condition, which was slightly better fit by
the threshold model in Experiments 1 and 2, is now better fit by the
detection model. However, in agreement with the results of the first
two experiments, the ROC is still reasonably well fit by the linear
high-threshold account (in contrast to item ROCs, which are generally
very poorly fit by linear high-threshold models).

As before, the ROC for the strong condition is undeniably
curvilinear. The results shown in Table 4 confirm that the linear
high-threshold model provides a rather poor fit in this case and that
the detection model again provides an excellent fit. Yet again, an
equal-variance model appears to apply. Indeed, the fit of a one-
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Figure 4. Confidence-based receiver operating characteristic plots for the
weak (left panel) and strong (right panel) conditions of Experiment 3. The
upper panel plots performance for intact versus rearranged pairs, the
second panel from the top plots performance for intact pairs versus pair
lures, the third panel plots performance for intact versus rearranged pairs,
and the bottom panel plots performance for items-from-pairs versus item
lures. In each graph, the dashed line indicates the maximum likelihood fit
of the high-threshold model and the solid curve indicates the maximum
likelihood fit of the signal-detection model.

parameter detection model (with r fixed at 1) is not significantly
improved by allowing r to vary.

In the second panel from the top in Figure 4, weak and strong
targets are plotted against pair lures instead of against rearranged
pairs. As is evident from Table 6, the high-threshold model again
offered a reasonable fit, one that was slightly better than that
provided by the detection model in the weak condition and slightly
worse than that provided by the detection model in the strong
condition. The deviations from the best-fitting threshold model are
significant in the strong condition, whereas the deviations from the
best-fitting signal-detection model are not significant in either
condition. In spite of significant deviations, the high-threshold
parameter estimates are again sensible in that the estimates of Ro
in the weak and strong conditions are similar to those obtained
from the corresponding intact versus rearranged ROC analyses.
The parameters of the signal-detection analysis suggest that, from
that theory’s point of view, the ratio of noise-to-signal variance

(i.e., r) is approximately 0.5, again suggesting that the standard
deviation of the intact pair distribution is about twice that of the
pair-lure distribution.

The third panel of ROC plots is similar, except that now the
rearranged pair lures represent the “signal” distribution and the
pair lures again represent the “noise” distribution. The chi-square
goodness-of-fit statistics shown in Table 6 reveal that the detection
model provided a better fit than the high-threshold model in both
conditions. Deviations from the best-fitting detection model are
significant in the weak condition only (whereas deviations from
the best-fitting high-threshold model are significant in both con-
ditions). As in Experiment 2, deviations from the threshold model
are small but systematic, as shown in Figure 4. The estimates of
the high-threshold parameter, Rn, (Parameter pl in Table 6) are
quite close to the corresponding estimates that were obtained from
the intact versus rearranged ROC analyses (Parameter p2 in those
fits). The estimates of d' from the high-threshold fits are also
similar for the weak intact versus pair-lure and weak rearranged
versus pair-lure fits (as they theoretically should be). For the
corresponding strong conditions, however, the d’ estimates appear
to diverge. With regard to the signal-detection parameter esti-
mates, the best-fitting model again implies that the variance of the
rearranged distribution is much greater than that of the pair-lure
distribution, especially in the strong condition (where r again
approached 0.5).

The lower panel of Figure 4 presents the data for the weak (left)
and strong (right) items that were originally presented as part of a
pair versus item lure (the ROCs for items presented as items on the
list are not shown because the results were so typical). The
maximum likelihood parameter estimates for the two types of item
ROC fits (i.e., item vs. item lure, and item-from-pair vs. item lure)
are presented in Table 6. For the most part, the fits of the two
models were good and were comparable with each other, except
that deviations from the threshold model were significant in the
strong condition for ROCs involving items from pairs. This actu-
ally corresponds to what appears to be a trend over the first three
experiments. Specifically, the performance of the threshold model
deteriorates relative to the detection model as strength increases.
This is especially true for the intact versus rearranged ROCs, but
it occurs with some regularity for the other ROCs as well.

One should note that, with regard to the high-threshold fits,
estimates of the retrieval parameter (pl in Table 6, which corre-
sponds to Ro) were not higher when items were taken from pairs
compared with when items appeared on the list as items. In fact,
they were lower. One might have expected to see a higher estimate
of retrieval for items that had appeared as part of pairs because the
associated item provides an extra retrieval opportunity not shared
by items that appeared alone on the study list. The fact that the
retrieval estimates are in the opposite direction is, from the high-
threshold perspective, somewhat surprising.

With regard to the signal-detection fits, the ROCs for items that
appeared in pairs on the study list are similar to those based on items
that appeared alone on the study list. Indeed, the obtained r values
shown in Table 6 are in the .7 to .8 range, just as item ROCs typically
are. For all of the item fits, fixing r at 1 yielded a significantly worse
fit, which is the expected result, as r is known to be less than 1 for item
recognition memory (Ratcliff et al., 1992).

As indicated earlier, we did not report a fit of the linear version
of the high-threshold model to the item ROCs in either Experi-
ment 2 or Experiment 3 because that model invariably provides a
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Table 6

Maximum Likelihood Parameter Estimates and Chi-Square Goodness-of-Fit Statistics for the
Signal-Detection and High-Threshold Models Fit to the ROC Data From Experiment 3

Condition Model pl p2 X df
Intact vs. rearranged®
Weak Detection 0.794 0.970 2.67 3
Threshold 0.363 0.222 10.01* 3
Strong Detection 1.015 1.860 0.57 3
Threshold 0.651 0.441 23.66* 3
Intact vs. pair lure®
Weak Detection 0.517 1.465 6.49 3
Threshold 0.423 0.926 2719 3
Strong Detection 0.528 2.571 425 3
Threshold 0.650 1.809 9.70* 3
Rearranged vs. pair lure”
Weak Detection 0.678 0.394 9.35* 3
Threshold 0.249 1.005 18.74* 3
Strong Detection 0.515 0.106 2.89 3
Threshold 0.426 1.333 9.80* 3
Item target vs. item lure®
Weak Detection 0.769 0.865 4.02 3
Threshold 0.226 0.540 3.06 4
Strong Detection 0.814 1.858 1.76 3
Threshold 0.388 1.447 1.25 3
Item from pair vs. item lure®
Weak Detection 0.836 0.604 4.61 3
Threshold 0.136 0.397 2.64 3
Strong Detection 0.724 1.088 2.01 3
Threshold 0.278 0.721 8.40* 3

Note. For all fits of the detection model, pl = r and p2 = d,. For the threshold model, p1 = Ro and p2 = Rn
for the intact vs. rearranged fits; pl = Ro and p2 = d' for the intact vs. pair lure and item vs. item lure fits, and
pl = Rn and p2 = d’ for the rearranged vs. pair lure fits. For 3 degrees of freedom, a chi-square value of 7.81
is significant at the .05 level. ROC = receiver operating characteristic.

*N = 620. °N = 1550.
*p < .05.

poor fit and is no longer regarded as viable. We did actually
perform those item fits, however, and we briefly mention the
results here to underscore the point that the weak intact versus
rearranged ROCs really are more linear than their item ROC
counterparts are. The results already presented in Tables 4 and 6
show that the chi-square values obtained from fitting the linear
high-threshold model to the weak intact versus rearranged ROCs
in Experiments 2 and 3 were quite low (6.59 and 10.01, respec-
tively). The corresponding values from a fit of the linear high-
threshold model to the weak item ROCs from Experiments 1 and 2
were 31.22 and 23.35, respectively. These poor fits occurred even
though the overall levels of performance were about the same for
the weak associative-recognition and weak item-recognition con-
ditions. Thus, the weak intact versus rearranged ROCs (i.e., the
associative-recognition ROCs) are noticeably more linear than
those obtained on item recognition tasks even when overall levels
of performance are comparable.

Experiment 4

All of the preceding ROC analyses were performed on data that
were pooled over participants because too few observations were
obtained from each participant to permit their individual ROCs to be
analyzed. Whenever data are pooled in this way, a natural question to
ask is whether the results are representative of individual participant
performance. This question seems especially relevant to the strong

condition of each of the preceding experiments because that condition
consistently yielded the most unexpected outcome (namely curvilin-
ear intact vs. rearranged ROC). In the previous three experiments, the
strong condition was only one of several conditions presented during
the course of a single session. In Experiment 4, by contrast, partici-
pants were exposed solely to the strong condition for two complete
sessions in hopes of collecting enough data from each participant to
allow their individual ROCs to be analyzed. Of particular interest was
whether the individual ROCs would be better fit by signal-detection
theory than high-threshold theory and whether pooling the data over
participants would introduce any systematic distortions in the shape of
the ROC.

In addition to these individual ROC analyses, we performed
simulations to determine what the ROC plot would look like if data
were pooled over hypothetical high-threshold participants who
differed with respect to their individual retrieval and guessing
parameters. Would pooling data over participants known to be
responding in accordance with high-threshold theory (each of
whom would yield a linear individual ROC) result in a curvilinear
group ROC when overall accuracy was high (as it was in the strong
conditions of the preceding experiments)?

Method

Participants. The participants were 26 undergraduates from the Uni-
versity of California, San Diego, who met the criterion of English fluency
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by age 7. Their participation fulfilled a lower division psychology course
requirement.

Design and procedure. Participants were presented with 80 study pairs
in each of two sessions (with no overlap between sessions). In each session,
the word pairs were presented five times each, for a total of 400 presen-
tations. An additional 112 study presentations were study fillers and were
not later tested. Forty of the strengthened study pairs were later tested as
strengthened intact pairs, and the other 40 strengthened pairs were tested as
strengthened rearranged word pairs. When building the study lists, we
filled the first 12 presentations with study fillers. The remaining 500 study
presentations were then used for inserting the study pairs. The strengthened
study pairs were inserted into the list in sets of two pairs. When inserting
each set, we used a randomly selected range of 45 study presentations. The
selected range was segmented into five equal segments of nine presenta-
tions each. The two study pairs were then inserted into the study list, such
that the first presentation of both pairs occurred in the first segment, the
second presentation of both pairs occurred in the second segment, and so
forth until all five segments were filled. If the word pairs were later to be
tested as rearranged word pairs, the members making up the two pairs were
switched at test (study A-B, C-D; test A-D, B-C). After inserting the 80
study pairs, we filled the remaining 100 presentations with study fillers,
which were not later tested. The test list consisted of 80 test pairs, of
which 40 were the strengthened intact pairs and 40 were the strengthened
rearranged pairs.

Participants were asked to study each study pair presented and to form
an association between the two words. They were informed that the test
would consist of intact and rearranged word-pairs. Examples of an intact
and rearranged word-pair were given in the instructions. No particular
memory strategy was suggested. During the study list presentation, the
word pairs were presented for 2 s each, with an interpresentation interval
of half a second. During the test session, half of the strengthened word
pairs were tested as strengthened intact pairs, and the other half as strength-
ened rearranged pairs. Each test presentation was presented with the
question “Did you previously study these two words together?” Partici-
pants were asked to respond by indicating their confidence that the two
words were previously studied together. Participants used the same 6-point
confidence scale that was used in Experiments 1-3. Following the second
test session, participants were then debriefed and provided with a credit slip
for their experimental participation.

Results and Discussion

Even after two sessions of exposure to the strong condition,
some participants still did not provide a sufficient range of confi-
dence ratings needed to perform an ROC analysis. Of the 26
participants tested, 18 yielded at least three points on the ROC
plot, which is the minimum requirement needed to fit the high-
threshold and signal-detection models. Of the 8 participants who
did not meet the requirement, 1 supplied high-confident “yes”
responses to every item or to nearly every item (both intact and
rearranged). Whether this participant understood the instructions
or not is unclear. The remaining 7 participants yielded only one or
two points on the ROC because their accuracy was very high, and
most of their responses were correct high-confident “yes” or “no”
responses. For the 18 participants who yielded at least three points
on the ROC, their data were analyzed in the same manner that the
group ROCs were analyzed in the preceding experiments. Before
presenting those analyses, we first present an analysis of the
pooled ROC to see whether or not the findings from the first three
experiments were replicated at that level of analysis.

Pooled ROC analysis. Figure 5 shows the pooled ROC (with
data pooled over the 18 participants for whom individual ROCs
were available to be fit) along with the best-fitting signal-detection
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Figure 5. Confidence-based intact-versus-rearranged pooled receiver op-
erating characteristic plot from Experiment 4. The dashed line indicates the
maximum likelihood fit of the high-threshold model, and the solid curve
indicates the maximum likelihood fit of the signal-detection model.

and high-threshold models. When the data were fit by the two
competing models using maximum likelihood estimation (as be-
fore), neither model fit extremely well, but signal-detection theory
did provide a much better fit than high-threshold theory (as is
visually apparent). The goodness-of-fit statistics were x*(3, N =
2880) = 57.80 and x*(3, N = 2880) = 328.0 for the detection and
threshold models, respectively, and the maximum likelihood esti-
mates of d, and r were 1.83 and 0.77, respectively. When the data
from the 6 participants who yielded only one or two points on the
ROC were included in the pooled data, the results were hardly
affected except that the estimate of d, increased to 2.13. All other
parameters and the chi-square goodness-of-fit statistics changed
minimally.

Given the results of the first three experiments, the fact that
signal-detection theory provided the better fit to the pooled ROC in
Experiment 4 was not surprising. What was surprising was the fact
that the detection model did not provide the nearly perfect fit seen
in the strong condition of the previous experiments. Instead, the
results are best described as being somewhat mixed, with the clear
advantage going to signal-detection theory. Also surprising was
the fact that the estimated value of r, which was expected to be
close to 1.0 on the basis of the preceding experiments, was closer
to .80, the value typically seen in item-recognition experiments.
Unlike the preceding experiments, forcing r to assume a value of 1
here resulted in a significantly worse fit, x*(4, N = 1440) = 91.33.
Why the deviations from the signal-detection model were more
significant in Experiment 4 compared with the previous three
experiments and why the value of r was less than 1 is not clear.
Exposing participants only to the strong condition over the course
of two sessions does seem to introduce some differences, possibly
strategic in nature, even though the main result (namely, that the
detection model provided a better fit than the threshold model) was
replicated. The question we address next is whether the individual
participant ROC analyses yield the same conclusions as the pooled
ROC analysis.

Individual participant ROC analyses. The 18 individual par-
ticipant ROCs with at least three points were analyzed in the same
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manner as the pooled ROCs were, and the results are shown in
Table 7. The table shows the chi-square goodness-of-fit statistic
for both the high-threshold and signal-detection fits as well as the
maximum likelihood estimates of the d, and r parameters from the
detection fits. Note that these chi-square values cannot be used for
making statistical inferences (e.g., are the observed deviations
greater than would be expected on the basis of chance?) because in
most cases the number of cells with more than five expected
observations was equal to the number of free parameters (so
degrees of freedom were equal to 0). Still, the measure serves to
indicate which model provided the better fit.

According to the chi-square goodness-of-fit statistic, the detec-
tion model provided the better fit for 14 of the 18 participants,
although in some cases the advantage was slight. For 12 of the
participants, one model seemed to clearly outperform the other. Of
these, the high-threshold model provided a noticeably better fit
for 3 participants (the first 3 participants in the table), and the
signal-detection model provided a noticeably better fit for 9 par-
ticipants (the last 9 participants in the table). The two models
provided essentially equivalent fits for 6 participants (the middle 6
participants in the table), although the detection model provided a
slightly better fit for 5 of these. As might be expected, visual
inspection of the individual participant ROCs revealed the same
information as the relative chi-square values. Summed over par-
ticipants, the chi-square for the signal-detection fits (36.68) was
much lower than that for the high-threshold fits (123.62). With
regard to the signal detection parameter estimates, the average
value of d, was 1.90, and the average value of r was 0.71.

These results suggest that pooling data over participants did not
introduce any significant bias in favor of one model over the other
or alter conclusions in any significant way. That is, as was true of

Table 7

Chi-Square Goodness-of-Fit Statistics for the High-Threshold
and Signal-Detection Models and Maximum Likelihood
Signal-Detection Parameter Estimates Based on Fits

to Individual ROC Data From Experiment 4

Participant HTT »* SDT »° r d,
15.00 023 8.13 0.85 0.88
20.00 1.07 9.83 0.60 1.04
22.00 0.02 0.93 1.56 2.40

2.00 1.89 1.54 0.74 223
4.00 0.18 0.07 0.59 2.90
7.00 1.21 0.39 0.63 1.51
9.00 5.19 3.50 0.79 1.23
10.00 0.18 0.20 0.47 3.06
16.00 4.44 2.66 0.72 1.57
1.00 28.64 438 0.55 1.82
5.00 12.72 0.19 092 263
8.00 9.73 0.67 0.77 0.87
14.00 24.26 0.13 0.81 1.89
17.00 11.01 295 0.49 2.65
18.00 4.69 0.02 0.53 1.13
19.00 5.14 0.14 0.78 2.51
26.00 12.09 0.96 0.65 1.48
24.00 0.94 0.00 044 2.35
Summary 123.63° 36.68* 0.72° 1.90°

Note. N = 160 for all chi-square tests. ROC = receiver operating
characteristic; HTT = high-threshold; SDT = signal-detection.
* Summed value. ® Mean value.

the pooled ROC analysis, the signal-detection model fit much
better than the high-threshold model at the individual level (al-
though the average quality of the signal-detection fit was not
especially impressive), and the estimated value of r was less
than 1.

It might be worth noting that 2 of the 3 participants whose data
were better fit by the high-threshold model were among the 3
participants with the lowest overall d, scores. In fact, the partici-
pant with the second lowest d, of all (Participant 15) and the
participant with the third lowest d, (Participant 20) both yielded
the most convincing linear ROCs. In some ways, this result cor-
responds with what was found at the group level in Experiments 1
through 3, namely, that high-threshold theory is likely to provide
the better fit when memory is relatively weak, whereas signal-
detection theory is likely to provide the better fit when memory is
strong.

High-threshold simulations.  Although the ROCs generated by
the individual participants in Experiment 4 were generally better
fit by a detection model than by a threshold model, we aiso
investigated what the effect of pooling data over participants
would be if all participants were known to be high-threshold
responders. To determine what the effect would be, we performed
simulations in which 18 simulated participants responded to 80
intact and 80 rearranged pairs in accordance with high-threshold
theory. Each participant was assigned different retrieval and guess-
ing parameters in an effort to represent the kind of variability that
would be present in a real experiment. The beta distribution
(described in the Appendix) was chosen to represent error variance
because all of the parameters in the high-threshold model are
probabilities that range from O to 1, and the beta distribution covers
that range (unlike, for example, the Gaussian distribution, which
ranges from minus infinity to plus infinity). Of particular interest
in these simulations was what the pooled ROC would look like
when retrieval was fairly high (as it was in the strong condition of
all four experiments), such that the ROC data fell mainly in the
upper left corer of the plot.

The details of the simulation are presented in the Appendix. The
main result was that pooling ROC data over 18 high-threshold
responders who differed considerably from each other in terms of
Ro, Rn, and the five confidence-specific guessing parameters in-
variably yielded an almost perfectly linear ROC. In a representa-
tive run of this simulation, a fit of the high-threshold model to the
pooled ROC data yielded a small and nonsignificant chi-square,
X°(3, N = 1440) = 1.84, whereas a fit of the signal detection
model to the same data yielded a highly significant chi-square,
X3, N = 1440) = 122.7. Thus, at least to the extent that these
simulations accurately represented error variance in the high-
threshold parameters, there appears to be no evidence that aver-
aging artifacts distorts the shape of the ROC if participants respond
in accordance with high-threshold theory. The overall conclusion
from Experiment 4, then, is that the results of the pooled ROC
analyses in the first three experiments are probably representative
of the individual participants.

General Discussion

The experiments reported here contribute to the understanding
of associative recognition in several ways. First, the results provide
fairly compelling evidence that associative-recognition decisions
are based on both associative retrieval and item familiarity. When
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participants retrieve the associate of one member of the pair, they
accept (if intact) or reject (if rearranged) the pair. Further, when
retrieval fails and the items of a pair are familiar, participants take
that as evidence that the pair was previously studied (even though
item familiarity is not diagnostic of this). The joint effects of
associative retrieval and item familiarity readily explain why re-
peating word pairs on a list increases the hit rate for those pairs
(because retrieval and familiarity work together) without affecting
the false-alarm rate to rearranged word-pairs (because retrieval and
familiarity oppose each other).

On the other hand, it does seem rather coincidental that the two
opposing forces would be equal in magnitude, and one would like
to see false-alarm rates to rearranged pairs change in the expected
direction when item or associative information is selectively ma-
nipulated. The effects of maintenance rehearsal (Glenberg & Brad-
ley, 1979; Nairne, 1983) and retention interval (Hockley, 1991,
1992) discussed earlier can already be viewed as selectively influ-
encing item information (and false-alarm rates do increase as item
information theoretically selectively increases). Also, using a
remember—know paradigm, Hockley and Consoli (1999) recently
found that associative-recognition “remember” responses were
very accurate, but the corresponding “know” responses were e€s-
sentially at chance, suggesting that “know” responses are based on
itern familiarity when retrieval fails. If so, “know” responses
would yield chance performance, because the items are equally
familiar for intact and rearranged pairs. In spite of this converging
evidence, our interpretation of the equivalent false-alarm rates
observed here in terms of opposing forces would be solidified by
future research showing that a selective increase in associative
information decreases the false-alarm rate to rearranged pairs.

A second contribution of the present research is that the shape of
the ROC changes in a surprising way as a function of strength.
Previous research showed that intact versus rearranged ROCs were
essentially linear, suggesting a high-threshold process (Yonelinas,
1997; Yonelinas, Kroll, Dobbins, & Soltani, 1999). The intact
versus rearranged ROCs reported here were not unambiguously
linear in the weak condition (the condition most similar to prior
research), but they were certainly more linear than is typical of
item-recognition memory ROCs. In two of the experiments re-
ported here, the linear high-threshold model provided a fit that
rivaled that of the curvilinear signal-detection model. Summed
across the first three experiments, the chi-square goodness-of-fit
value for the threshold model (31.02) was comparable with that of
the detection model (23.46). Thus, the weak intact-versus-
rearranged ROCs are probably best described as falling between
the predictions of the two models. The deviations from linearity
evident in the data reported by Yonelinas (1997), although not
significant, were also usually in the direction consistent with
curvilinearity. Thus, although our ROCs were not quite as linear as
those observed by Yonelinas, the present results are largely con-
sistent with prior ROC analyses of associative-recognition
memory.

The picture changes dramatically when pairs are strengthened.
In all four experiments, the detection model provided a much
better fit than the threshold model in the strong condition. Summed
across the first three experiments, the chi-square goodness-of-fit
value for the threshold model (119.00) was much higher than that
of the detection model (4.10). Moreover, in these three experi-
ments, an equal-variance detection model was suggested. The
value of r (the estimated ratio of the standard deviations of the

rearranged and intact distributions) averaged across the first three
experiments was .91, and in none of the three experiments was the
fit significantly improved by allowing r to vary (compared with
fixing it at 1.0). In Experiment 4, which differed procedurally from
the first three experiments in that participants were exposed ex-
clusively to the strong condition over the course of two sessions,
the value of r was less than 1.0 for reasons that are not clear.
Because a weak condition was not included in that experiment, it
is impossible to say whether or not the observed value of r was
greater than what would have been obtained in the weak condition.

Although the results of Experiment 4 were not completely in
line with the other three experiments, they do correspond to our
central finding that a nearly linear ROC in the weak condition
becomes curvilinear in the strong condition. What could explain
such a dramatic transformation of the ROC based merely on
strengthening the pairs? A clue is provided by the third contribu-
tion of the present research, namely, that associative information
may be continuously distributed after all (rather than being all or
none) and may be much more variable than item information. The
evidence for this suggestion is provided by the intact versus
pair-lure ROCs and the rearranged versus pair-lure ROCs. Asso-
ciative information presumably comes into play for both intact and
rearranged pairs. For pair lures, by contrast, associative informa-
tion must be negligible because the two items of the pair were not
previously encountered in the experimental session. Thus, these
ROCs consist of one pair involving associative information (in
addition to item information) and one pair involving item infor-
mation only. In general, the detection model offered a better fit
than the high-threshold model to the ROCs involving pair lures,
and the estimated standard deviation of the associative distribution
(intact or rearranged) was generally twice that of the pair-lure
distribution. In the next section, we suggest a model that relies on
this information to account for our curious pattern of results.

A Some-or-None Model of Associative Recognition

The two models discussed so far assume that associative infor-
mation is a continuously distributed evidence variable (like the
signal-detection model illustrated in Figure 1) or an all-or-none
retrieval variable (i.e., the high-threshold model represented by
Equations 3 and 4). Neither one of these models by itself can
explain the pattern of results we observed. However, a “some-or-
none” model like one proposed long ago by McFadden and Greeno
(1968) seems to provide a relatively parsimonious account. We
propose a specific some-or-none model below and then present the
results of simulations that serve to best illustrate how the model
behaves.

Assumptions. The assumptions underlying the particular
some-or-none model we propose here are as follows:

Assumption 1. Both item information (/) and associative information
(A) are continuously distributed random variables that sum to yield a
strength-of-evidence variable that is used to decide whether or not a
pair was previously encountered. The mean and standard deviation of
I are denoted ;... and o,y Tespectively, and the mean and standard
deviation of A are denoted p, . and 0, Fespectively.

Assumption 2. Associative information is much more variable than
item information (0,0 > Oyem)- This was not something we pre-
dicted in advance on the basis of theoretical considerations—the
assumption is based on the ROC results involving pair lures. Later, we
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offer some thoughts as to why this might be true, but for the moment
it is simply an assumption driven by our unexpected resuits.

Assumption 3. Retrieval failure can occur. That is, like the high-
threshold model (Yonelinas, 1997), we assume that for some propor-
tion of intact and rearranged pairs, no associative information is
retrieved (leaving, we assume, only item information on which to base
an associative-recognition decision). Unlike the high-threshold model,
we assume that when retrieval does not fail, associative information
can be retrieved to varying degrees. As in the equations for the
high-threshold model, the probability of retrieving associative infor-
mation is denoted Ro and Rn for intact and rearranged pairs, respec-
tively.

More formally, the hit and false-alarm rate equations for the new
model proposed here are:

H=RoX[p(I+A)>c]+ (1 —Ro) X[pl)>cland (8)
FA=RnX[pI—A)>cl+ (1 —-Rn) X[p(D>cl. (9

Equation 8 states that with probability Ro, the decision for an intact
pair is based on the sum of item and associative information. If that
sum exceeds a decision criterion, the participant responds “yes,”
otherwise the response is “no.” With probability 1 — Re, no
associative information is retrieved, and the decision is based on
item information only. Thus, in this case, the participant responds
“yes” if item familiarity alone exceeds the decision criterion.
Equation 9 states that with probability Rn, the decision for a
rearranged pair is based on the difference between item and
associative information. Only if that difference exceeds a decision
criterion does the participant mistakenly respond “yes.” With
probability 1 — Rn, the decision is based on item information only,
such that the participant responds “yes” if item familiarity alone
exceeds the decision criterion.

The basic structure of these two equations is consistent with the hit
rate and false-alarm rate to intact and rearranged pairs in the weak and
strong conditions across the first three experiments. That is, in the
strong condition, I increases, and so do Ro and Rn. Thus, the hit rate
should increase considerably, but the false-alarm rate should be much
less affected. Similar ideas were represented in the context of a
high-threshold model described earlier in Equations 6 and 7. In that
sense, the new model offered here is not a radical departure from the
high-threshold model proposed by Yonelinas (1997).

The mean strength-of-evidence values for intact and rearranged
pairs, according to the new model, are

Mintact = Mitem + Ro X HMassoc

Mrearr = Mitem — Rn X Massoc

This model is a lot like the one proposed by Hockley (1992),
except that (a) the variance of the associative-information distri-
bution is assumed to be large, (b) associative information is not
always added to item information for intact pairs, and (c) associa-
tive information is sometimes subtracted from item information for
rearranged pairs.

Adding or subtracting random variables like 7 and A increases
the variance of the resulting value beyond that of the two constit-
uents. If A is added to I with a probability of Ro for intact pairs and
A is subtracted from / with probability Rn for rearranged pairs,
then the variances of the resulting intact and rearranged distribu-
tions (0%, and 02, respectively) would be

2 —_ el 2
Tigtact = Titem + Ro X Oassoc and

2 — 2
= Oitem

o + Rn X 02

rearr

A key assumption of our account is that Ro and Rn are less
than 1.0 in the weak condition (i.e., retrieval failure can occur in
that condition) but that they both approach 1.0 in the strong
condition (i.e., some associative information may be retrieved
for all strong intact and rearranged pairs). Thus, in the strong
condition,

2 — 2 2
Tintact = Titem + T assoc and

2

—_ 2 2
Orearr = Titem + Tassocs

which is to say that an equal variance ROC should result (i.e.,
0% ot = Oare). These equations assume that item and associative
information are uncorrelated. If they were instead positively cor-
related (i.e., if the more familiar items were also the ones most
likely to occasion successful retrieval), then the variance of the
rearranged distribution would be much less than that of the intact
distribution,* which would be contrary to the equal-variance intact-
versus-rearranged ROCs observed in the strong conditions of
Experiments 1 through 3. If this assumption turns out to be
incorrect then, obviously, the model would need to be revised.

In the weak condition, Ro and Rn are theoretically less than 1.0.
Thus, in this case, the intact distribution is produced by one
random variable (/) that is only sometimes added to another
random variable with much greater variance (A). Similarly, the
rearranged distribution is produced by one random variable (I)
from which another random variable with much greater variance
(A) is only sometimes subtracted. The resulting distributions of
evidence values for intact and rearranged pairs would not be
Gaussian in form even if / and A are themselves normally distrib-
uted, and the resulting implications for an empirical intact-versus-
rearranged ROC are not easy to grasp intuitively. As we show next
by means of simulation, if A is added to or subtracted from I on
only some of the trials (Assumption 3), the expected ROC can be
nearly linear in form even if A is a continuously distributed random
variable.

Note that this model also generally predicts that ROC analyses
for a weak condition involving pair lures (weak intact vs. pair lure,
or weak rearranged vs. pair lure) will be curvilinear but perhaps
not perfectly fit by the signal-detection model because the
strength-of-evidence distribution (intact or rearranged) will not be
Gaussian. For example, the strength of evidence for weak intact
pairs consists of item information that is sometimes added to
associative information (a non-Gaussian distribution), whereas the
strength of evidence for pair lures consists of item information
only (which is theoretically Gaussian in form). Thus, the weak
intact versus pair-lure ROC pits one non-Gaussian distribution
against another Gaussian distribution, so the fit of the detection
model should not be perfect. In the strong condition, by contrast,
the strength-of-evidence distribution for intact pairs becomes

4 The reason is that the variance of the sum of two correlated random
variables like 7 and A is equal to 02, + OCoc + 2P(Tiem Tassac)» Where
p is the correlation between the two variables. By contrast, the variance of
the difference between two correlated random variables (i.e., I — A) is
equal to 02, + 02oc — 20(Tiem Tassoc)- Only when p equals O are the
variances the same whether the random variables are added or subtracted.
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Gaussian, so the fit of the detection model in that case should
improve. A tendency for the detection model to perform particu-
larly well in the strong conditions was evident in all four
experiments.

Simulations. The purpose of the simulations was (first and
foremost) to determine what the impact of a some-or-none process
would be on the shape of the ROC. Would it ever yield a linear
ROC? A second purpose was to show that a set of parameters
could be found that faithfully reproduced the observed array of
findings. That would not prove that the some-or-none model is
correct (especially because the model was developed to explain
these findings), but failure to account for any important quantita-
tive trends would be grounds for doubting the model’s validity.

The simulations simply involved generating item information
and associative information values from different normal distribu-
tions and summing them to yield strength-of-evidence values in
accordance with Equations 8 and 9. The parameters of the relevant
distributions in the simulation were selected on the basis of trial
and error, but, as is probably apparent from the values chosen, an
exhaustive search was not performed. The mean of the item
distribution was set to 1.0 for a pair of new items, to 2.0 for a pair
of items seen once (weak), and to 4.0 for a pair of items seen six
times (strong). For the sake of simplicity, the item information
distribution was always assumed to have a standard deviation
of 1.0, regardless of its mean.

The mean of the associative-information distribution (gt,s...)
was set to 3.0 for both the weak and strong conditions, and its
standard deviation (0,,,,.) Was set to 3.0 in the weak condition and
to 2.0 in the strong condition. That is, associative information was
assumed to be much more variable than item information, espe-
cially in the weak condition. If we did not assume that associative
information was more variable than item information, then it
would not be possible to account for the remarkably low values of
r observed in the ROCs involving pair lures.

Holding the mean value of associative information (i.e., t,g0c)
constant as a function of strength while decreasing the standard
deviation may seem somewhat odd. It might seem more natural to
increase p, .. while leaving o, fixed (as we did for items).
However, it should be noted that decreasing o, increases the
associative d’ as effectively as increasing p, .. would. To appre-
ciate this point, assume for the moment that all decisions were
based on associative information without item information being
taken into account in any way (i.e., / = 0 in this hypothetical
scenario, and Ro and Rn both equal 1.0). Under such conditions, d’
would be equal to the mean associative strength for intact pairs
(ie, I + A = 3.0) minus the mean associative strength for
rearranged pairs (i.e., I — A = —3.0) divided by the standard
deviation of the associative distributions (3.0). That is, d' for the
weak condition would be 6.0/3.0, or 2.0. For the strong condition,
the means are assumed to be the same, but o, decreases to 2.0
such that d’ would increase to 6.0/2.0, or 3.0. Although associative
d' increases in the strong condition either by increasing the mean
or by decreasing the standard deviation, we found that the latter
option provided a better fit to the data when item and associative
were combined.

In the simulations, the values of Ro and Rn were both set to 1.0
in the strong condition and to 0.60 and 0.40, respectively, in the
weak condition. The values could have both been set to, say, 0.50
in the weak condition without changing anything essential, but the
nearly linear ROCs that are observed in the weak condition have a

slope less than 1.0 (e.g., Yonelinas, 1997). That is usually ex-
plained by assuming that the probability of retrieval for an intact
pair exceeds that of a rearranged pair. The same must be assumed
here to yield an ROC with the appropriate slope. Table 8 presents
a summary of the parameter values used in the simulations.

To produce ROC data, we ran 2,000 trials for each of several
settings of ¢, the location of the decision criterion (the different
locations reflect different levels of confidence). On each trial, a
value was randomly selected from the item distribution, then a
value was randomly selected from the associative-information
distribution. On a random Ro proportion of the trials, the item and
associative-information values were summed to yield a strength-
of-evidence value. On the remaining 1 — Ro proportion of the
trials, strength of evidence was determined by the item information
only. If the evidence value exceeded the preset value of c, the hit
rate counter was incremented (otherwise the counter did not in-
crement). A similar sequence of events then unfolded to yield an
evidence value for rearranged pairs. That is, a value was randomly
selected from the item distribution, and another value was ran-
domly selected from the associative-information distribution. On a
random Ra proportion of the trials, the associative information
value was subtracted from the item information value to yield a
strength value. On the remaining 1 — Rn proportion of the trials,
strength was determined by the item information only. If the
evidence value exceeded the preset value of ¢, the false-alarm rate
counter was incremented (otherwise the counter did not incre-
ment). The 2,000 trials yielded a hit rate and a false-alarm rate for
that value of ¢ (i.e., for a particular criterion setting). The value of
¢ was then changed and the process was repeated to yield another
pair of hit rates and false-alarm rates. A full ROC was constructed
by conducting simulations with ¢ set to 0.90, 1.55, 2.20, 2.85,
and 3.50 (these were chosen because they yielded confidence-
specific hit and false-alarm rates roughly comparable with what
was observed in the data). The ROCs were then fit by maximum
likelihood estimation.

The predicted hit rates and false-alarm rates, which are shown in
Table 9, were those associated with a ¢ of 2.85 simply because
those values were in the range observed in Experiments 1
through 3. It is clear that the hit rates changed considerably as a
function of strength, but the false-alarm rates remained nearly
constant. The maximum likelihood parameter estimates and
goodness-of-fit statistics for both the detection and threshold mod-
els are shown in Table 10. Of most interest is the fact that the
model yields a linear intact-versus-rearranged ROC with a slope

Table 8
Parameter Settings Used to Simulate the Some-or-None Model
Condition
Parameter Lure Weak Strong
Item information
itern 1.0 2.0 4.0
Titerm 1.0 1.0 1.0
Associative information
MAssoc 0.0 3.0 3.0
T assac 0.0 3.0 20
Retrieval probabilities
Ro 0.0 0.6 1.0
Rn 0.0 04 1.0
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Table 9
Proportion of Simulated “Yes” Responses to Each Pair Type
Pair and item type Weak Strong
Intact 0.52 0.97
Rearranged 0.17 0.21
Pair lure 0.04

less than 1 in the weak condition (one that is better fit by the
threshold model than the detection model) and a curvilinear intact-
versus-rearranged ROC that is symmetric about the main diagonal
in the strong condition (one that is better fit by the detection model
than the threshold model). Although several parameters were
changed as a function of strength to reproduce the full range of
data we observed, the transformation in the shape of the ROC from
linear to curvilinear occurs because of the increase in Ro and Rn
to 1.0.

The fact that occasionally combining variable associative infor-
mation with item information yields a nearly linear ROC is the
most important revelation provided by these simulations. Note that
deviations from this nearly linear ROC will always be in the
direction of curvilinearity (as is almost always true in real data). A
less pronounced advantage for the high-threshold model in the
weak condition (which is what we found empirically) could have
been easily arranged by increasing the values of Ro and Rr for that
condition somewhat and adjusting the other parameters
accordingly.

The other quantitative details in Table 10 are also consistent
with observed trends. For example, the ROCs involving pair lures
are generally better fit by the detection model than by the threshold
model, especially in the strong conditions. Also, the r parameter
for the intact versus pair-lure ROCs is close to 0.50 (as it should
be), although it does decrease moderately as a function of strength,
contrary to what we actually observed in Experiments 2 and 3. The

Table 10
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r parameter for the rearranged versus pair-lure ROCs is also in the
appropriate range, and it decreases substantially as a function of
strength, which was true of fits to actual data.

It should be pointed out that with the parameter settings shown
in Table 8, item and associative-information values were not
always positive values. Thus, for example, the associative distri-
bution in the weak condition had a mean of 3.0 and a standard
deviation of 3.0, so some of the associative values were actually
negative (namely, the 16% of values that were less than one
standard deviation below the mean). A negative value that might
occasionally be generated by an intact pair means that, had the
decision been made exclusively on the basis of associative infor-
mation, that pair would have mistakenly been judged to be a
rearranged pair. That is, if I is set to zero (for purposes of
illustration), then Wi, = 3.0 and p,.,, = —3.0. Assuming
unbiased responding (i.e., assuming that the decision criterion was
placed at 0), a value greater than 0 would be taken as evidence that
the pair was intact, whereas values less than 0 would be taken as
evidence that the pair was rearranged. Under these conditions,
even intact pairs would sometimes generate negative values that
would be taken as evidence that the pair was rearranged (and, of
course, rearranged pairs would sometimes generate positive values
that would be taken as evidence that the pair was intact). In the
simulations, associative evidence values were added to item infor-
mation in a way that preserved this diagnosticity (i.e., some values
from the intact distribution were negative, and some from the
rearranged distribution were positive).

A question about the some-or-none model that has yet to be
asked is why associative information might be more variable than
item information. Although we have no formal account of this
aspect of the model, the increased variability does not seem sur-
prising in retrospect if associative information is indeed a contin-
uously distributed variable. First, if the two types of information
are different (as item familiarity and associative retrieval presum-
ably are), it would seem highly coincidental if they turned out to

Maximum Likelihood Parameter Estimates and Chi-Square Goodness-of-Fit Statistics for the
Signal-Detection and High-Threshold Models Fit to the Simulated ROC Data

Condition Model pl p2 X daf
Intact vs. rearranged
Weak Detection 0.795 0.968 13.31* 3
Threshold 0.379 0.258 5.81 3
Strong Detection 1.012 2.657 2.12 3
Threshold 0.939 0.483 21.37* 3
Intact vs. pair lure
Weak Detection 0.553 1.443 7.94*% 3
Threshold 0.424 0.875 14.98% 3
Strong Detection 0.430 3.689 5.78 3
Threshold 0.927 1.797 20.92* 3
Rearranged vs. pair lure
Weak Detection 0.665 0.362 7.47 3
Threshold 0.308 1.141 3.82 3
Strong Detection 0.470 —0.001 1.73 3
Threshold 0.465 1.381 27.69* 3
Note. For all fits of the detection model, pl = r and p2 = d_. For the threshold model, pl = Ro and p2 = Rn

for the intact vs. rearranged fits; pl = Ro and p2 = d’ for the intact vs. pair lure fits, and pl = Rnand p2 =
d' for the rearranged vs. pair lure fits. For 3 degrees of freedom, a chi-square value of 7.81 is significant at the
.05 level. N = 20,000 for all chi-square tests. ROC = receiver operating characteristic.

*p < .05.
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have the same variance. Thus, the fact that they differ in this
respect should not be surprising. Second, low item familiarity and
a small amount of associative information may both contribute
very little to the strength of evidence that a pair was seen before.
Thus, at the low end of the scale, both kinds of information may be
more or less equivalent. At the high end of the scale, by contrast,
item familiarity is probably vastly exceeded by associative infor-
mation. That is, no matter how familiar the two items of a pair
happen to be, it would still provide much less evidence that the pair
was previously seen than would a clear recollection of that fact.
According to this notion, whereas item familiarity ranges from low
to high, associative information ranges from low to much higher
than that (i.e., associative information is more variable than item
information is).

Implications for Other Models

The present results are not easily reconciled with a standard
high-threshold account of associative-recognition memory. That
account predicts a linear ROC for intact versus rearranged pairs
regardless of strength. The results reported here suggest that de-
viations from the high-threshold model increase (and deviations
from the signal-detection model decrease) as strength increases.
Although these results seem to suggest a role for signal-detection
theory in accounting for associative-recognition memory, it is also
possible that other versions of the high-threshold account could
accommodate our findings. For example, a double high-threshold
account (Macmillan & Creelman, 1991), or an account that allows
for gradations of confidence for above-threshold evidence values,
may be able to account for the present results. The simplest
high-threshold account, though, may be unsustainable.

Finally, the present results add to prior research suggesting that
global matching models, which typically do not include a specific
role for retrieval in associative recognition, may need to do so (cf.
Clark & Gronlund, 1996). The results also suggest that, in addition
to including a role for retrieval, models like SAM (Gillund &
Shiffrin, 1984) and MINERVA 2 (Hintzman, 1984) may need to
modify their fundamental assumptions about how associative rec-
ognition works. In both models, item and associative information
are inseparable. Therefore, if item familiarity is contributing to the
decision-making process, associative familiarity with the same
variance should be contributing as well. If that were the case,
though, ROC plots should never be linear, and an extremely
unequal variance detection model would not be expected to apply
to intact versus pair-lure ROCs. Thus, these models need to specify
how item familiarity can contribute independently of associative
familiarity and why associative information is so variable. One
model that can already do that is TODAM (Murdock, 1982, 1997).
As noted by Clark et al. (1993), TODAM allows for associative
information to be represented separately from item information
because the two items of a pair can be convolved and then stored
with the other items and pairs in a common, distributed, memory
representation. A recent revision of TODAM (Murdock, 1997)
also accommodates separate effects on item information versus
associative information, such as the differential forgetting rates
they engender. Conceivably, that model could be brought to bear
on the current findings as well. For the moment, the simple (but
admittedly incomplete) some-or-none model proposed here pro-
vides a reasonably parsimonious account of many associative-
recognition phenomena.
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Appendix

High-Threshold Simulations

Each simulated participant was assigned a unique value of Ro, Rn, and
five guessing parameters (g/ through g5). All seven parameters were
selected by randomly drawing from a beta distribution with the appropriate
mean (see below) and a reasonably large standard deviation. The beta
distribution was selected because all of the parameters in the high-
threshold model are probabilities that range from O to 1, and the beta
distribution covers that range. This distribution also possesses a shape that
seems likely to correspond, at least approximately, to the true error distri-
bution for probabilities. Specifically, when the mean is close to 0, the
distribution is skewed to the right (with many values compressed against
the floor). When the mean is close to 1, the distribution is skewed to the left
(with many values compressed against the ceiling). When the mean is close
to .50, the distribution is bell shaped.

The beta distribution is defined by two parameters, @ and b, and its range
is 0 < p < 1, the appropriate interval for our purposes. For integer values
of a and b, the beta distribution is given by [(a + b)Y(a!b))(1 — p)°~!
(p)*~! and has a mean of a/(a + b) and a variance of ab/[(a + b)* (a +
b + 1)]. For our simulations, we fixed the sum of @ and b at 10 for the two
retrieval parameters because that generated what seemed to us to be
sufficient error variance.

For each participant, a value of Ro was selected by drawing from a beta
distribution with a mean and standard deviation of .70 and .138, respec-
tively (involving beta parameters of a = 7, b = 3), and a value of Rn was
selected by drawing from a beta distribution with a mean and standard
deviation of .40 and .148, respectively (involving beta parameters of a = 4,
b = 6). These mean values of Ro and Rrn were chosen because they are
close to the maximum likelihood estimates of Ro and Rn in the strong
conditions of Experiments 1 through 3. Five guessing parameters were then
selected the following way: 20 random numbers between 0 and 1 were
generated from a uniform distribution and then arranged in ascending
order. The 1st, 2nd, 4th, 8th, and 16th of these numbers constituted the five
guessing parameters for that participant. This method ensured that the
high-confident “yes” guessing parameter would be associated with the
lowest guessing rate, the medium-confident “yes” guessing parameter
would be associated with the next lowest guessing rate, and so on. Using
this method, we drew each guessing rate from a unique beta distribution.
The high-confident guessing parameter, for example, would be drawn from
a beta distribution with parameters of ¢ = 1 and b = 19. The mean
guessing rates for the varying degrees of confidence would be .05, .10, .20,
.40, and .80, and their respective standard deviations would be .048, .065,
.087, .107, and .087. These mean values for the guessing parameters were
selected because they were similar to the maximum likelihood estimates of
the guessing parameters when the high-threshold model was fit to the ROC
data from the strong conditions of Experiment 1 through 3. The standard
deviations for these parameters and for the retrieval parameters were not
selected in any principled way. Instead, they were the standard deviations
that emerged when the beta distribution was programmed in a convenient
way. The values were large enough to ensure considerable variability in
performance across simulated participants.

After selecting the parameters for an individual participant, we began
simulated recognition. For an intact trial, a random number between 0

and 1 (ul) was generated from a uniform distribution. If #/ was less than
Ro, the response was scored as a high-confident hit. If u/ was greater than
Ro (which means that retrieval failed), a second random number was
generated (12). If u2 was less than gl, then the response was scored as a
high-confident hit (although it was a guess). If 42 was not less than g/ but
was less than g2, then the response was scored as a medium-confident hit.
If u2 was not less than g/ or g2 but was less than g3, then the response was
scored as a low-confident hit. If 2 was not less than g/, g2, or g3 but was
less than g4, then the response was scored as a low-confident miss. If u2
was less than g5 (but was not less than any of the other guessing param-
eters), then the response was scored as a medium-confident miss. Finally,
if 42 was not less than any of the five guessing parameters, then the
response was scored as a high-confident miss.

The procedure for simulating a rearranged trial was similar. First, a
random number between 0 and 1 (ul) was generated from a uniform
distribution. If u/ was less than Rn, the response was scored as a high-
confident correct rejection. If ul was greater than Ro (which means that
retrieval failed), a second random number was generated (#2). If u2 was
less than g1, then the response was scored as a high-confident false alarm.
If 42 was not less than g/ but was less than g2, then the response was
scored as a medium-confident false alarm. If #2 was not less than g/ or g2
but was less than g3, then the response was scored as a low-confident false
alarm. If 42 was not less than gi, g2, or g3 but was less than g4, then the
response was scored as a low-confident correct rejection. If u2 was less
than g5 (but was not less than any of the other guessing parameters), then
the response was scored as a medium-confident correct rejection. Finally,
if u2 was not less than any of the five guessing parameters, then the
response was scored as a high-confident correct rejection.

A single run of the simulation yielded 1,440 observations from intact
trials (involving varying degrees of confidence) and 1,440 observations
from rearranged trials (also involving varying degrees of confidence).
These data were then used to construct an ROC, which was then analyzed
by fitting both the high-threshold model and the signal-detection model by
means of maximum likelihood estimation. The simulation was actually
run 10 times, and all 10 ROCs were analyzed. For the signal-detection fits,
the chi-square goodness-of-fit values (with 3 degrees of freedom) ranged
from a low of 113.2 to a high of 180.1, which is to say that none of the fits
were very accurate. For the high-threshold fits, the chi-square goodness-
of-fit values (also with 3 degrees of freedom) ranged from a low of 1.37 to
a high of 11.6, which is to say that all of the fits were quite accurate, and
only occasionally did the simulated data deviate from the best fitting model
to a significant degree. In every case, visual inspection of the ROC
revealed what appeared to be a nearly perfectly linear ROC. Thus, pooling
data over participants known to be responding in accordance with high-
threshold theory does not distort the shape of the ROC even when overall
performance is relatively high.
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