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T. Ribot’s (1881) law of retrograde amnesia states that brain damage impairs recently formed memories
to a greater extent than older memories, which is generally taken to imply that memories need time to
consolidate. A. Jost’s (1897) law of forgetting states that if 2 memories are of the same strength but
different ages, the older will decay more slowly than the younger. The main theoretical implication of this
venerable law has never been worked out, but it may be the same as that implied by Ribot’s law. A
consolidation interpretation of Jost’s law implies an interference theory of forgetting that is altogether
different from the cue-overload view that has dominated thinking in the field of psychology for decades.

Two seemingly unrelated psychological laws, both enacted in
the late 1800s, seem to have stood the test of time. One law was
advanced by Ribot in 1881 in a book entitled Les Maladies de la
Memoire (The Diseases of Memory). On the basis of clinical
observations, Ribot (1881, 1882) observed that brain injury affects
premorbid memories in the reverse order of their formation such
that newly formed memories (i.e., those formed just prior to brain
injury) are impaired to a greater extent than older memories.
Today, Ribot’s law is referred to as temporally graded retrograde
amnesia, and much evidence involving both human and animal
subjects supports its validity (Squire, Clark, & Knowlton, 2001).
The main theoretical implication of Ribot’s law is that memories
need time to consolidate. As they do, they become less vulnerable
to the forces of traumatic brain injury. Although the field of
experimental psychology has yet to fully embrace this way of
thinking, consolidation theory is regarded as a standard model in
the field of neuroscience (e.g., McGaugh, 2000; Squire, 1992).

Ribot’s law may be intimately related to one of two ideas
advanced by Jost in 1897. Jost’s laws hold that that if two asso-
ciations (i.e., two memory traces) are of equal strength but differ-
ent ages, the older one will (a) benefit more from an additional
learning trial and (b) decay less rapidly in a given period of time
than the younger one (Youtz, 1941). The second of these two laws
(Jost’s law of forgetting) is the main focus of this article. Jost’s
second law typically manifests itself in forgetting functions that
represent levels of retention aggregated over items, as illustrated in
Figure 1. In this hypothetical example, List 1 was learned to an
initial level of 10 items recalled. After 20 units of time, during
which some of the List 1 items were forgotten, a second list (List
2) was learned to a level of 8 items recalled. As shown in the
figure, the younger traces are lost at a relatively fast rate such that,
at some point, the number of items recalled from the young list
equals the number of items recalled from the old list. Jost’s law of
forgetting states that from that moment on, the younger function
will decline more rapidly than the older one (although, in truth, the
same was also true before their levels coincided).

Both of Jost’s laws have long been held in high regard by the
field. Slamecka (1985), for example, referred to them as Jost’s
“two famous laws” (p. 815), and Estes (1979) remarked,

It is rather remarkable that by the end of the first decade of experi-
mental psychology laws of the growth and decay of traces or associ-
ations had been formulated in a way that has remained virtually
unchanged through the remainder of the century and has entered into
nearly every theory of learning and memory. Credit for the penetrating
insight responsible for these formulations evidently belongs to Adolf
Jost, a student of Georg Mueller; hence “Jost’s laws” have earned a
place among the most enduring and ubiquitous principles of memory.
(pp. 643–644)

In spite of the fact that Jost’s law of forgetting is held in the
highest regard and has stood unchallenged for more than a century,
its theoretical significance remains virtually unexplored. That the
field of experimental psychology would be comfortable with this
state of affairs is remarkable given that the theoretical implications
of other well-established laws, such as Weber’s law, have been
repeatedly and thoroughly considered. By contrast, not one de-
tailed effort to grapple with the theoretical implications of Jost’s
law can be identified in the 20th-century literature (or, so far, in the
21st-century literature).

What explains this unusual absence of curiosity? One possibility
is that natural, but incorrect, intuitions about Jost’s law create the
impression that it amounts to little more than another way of
stating the obvious. For example, it might be imagined that Jost’s
law follows merely from the fact that curvilinear forgetting func-
tions necessarily fall through a greater range when memory traces
are young compared with when they are old. In his influential text
on experimental psychology, Woodworth (1938) may have fallen
prey to this intuition when he said,

This law of Jost’s can even be deduced from the general shape of a
retention curve. As a lesson becomes old it reaches a flatter part of the
curve and its further decline will be slow. Therefore, a young lesson
momentarily at the same retention level as an old one is on a steeper
part of the curve and doomed to decline more rapidly. (p. 59; Wood-
worth & Schlosberg, 1954, p. 730)

It is not entirely clear what Woodworth (1938) meant by the
“general shape of a retention curve,” but the most straightforward
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interpretation of this statement is that Jost’s law follows from the
mere fact that forgetting functions are curvilinear. Youtz (1941)
appeared to have the same idea in mind when she observed that
Jost’s law follows from the fact that empirical forgetting functions
are “negatively accelerated” (p. 33), which is how curvilinear
functions are often described. If Jost’s law merely implies that
forgetting functions are curvilinear, then it is hard to imagine that
it has much theoretical significance.

Although Woodworth’s (1938) intuition about Jost’s law is
quite natural, it is also quite wrong. Curvilinear forgetting func-
tions do, of course, fall through a greater range when memory
traces are young compared with when they are old, but this is not
why Jost’s law is true. Consider, for example, the hypothetical
forgetting function shown in Figure 2. This function declines from
16 items recalled to 8 items recalled over the 1st day (an absolute
loss of 8 items), from 8 items recalled to 4 items recalled over the
2nd day (a loss of 4 items), and from 4 items recalled to 2 items
recalled over the 3rd day (a loss of 2 items). Thus, although the
function’s absolute drop decreases with age, which is the property
that Woodworth (1938) emphasized, its proportional drop remains
constant regardless of the age of the memory trace. In this exam-
ple, the function will always fall from whatever its level happens
to be at time t to 50% of that level at time t � 1 day (which is to
say that its half-life is equal to 1 day). The constant proportional
loss illustrated in Figure 2 is the defining characteristic of the
exponential, and that property figures prominently in the discus-
sion of Jost’s law to follow. Other downward curvilinear functions
exhibit a faster or slower proportional decline as a function of time.

In a short but insightful note about Jost’s law, Herbert Simon
(1966) observed that if the old and new forgetting functions both
have the same half-life (i.e., the same proportional decline per unit
time), then Jost’s law is incompatible with exponential forgetting.
As shown in Figure 2, the exponential is a perfectly adequate
curvilinear function. Thus, if Jost’s law is incompatible with
exponential forgetting, as Simon (1966) showed, it cannot also be
true that Jost’s law follows merely from the fact that forgetting
functions are curvilinear, as Woodworth (1938) implied. The rea-
son why Jost’s law is incompatible with exponential forgetting is
that old and new exponential functions with the same half-lives

would necessarily decline by the exact same amount if their
strengths ever did happen to coincide. If, for example, both func-
tions had a half-life of 1 day, then they would both decline by 50%
from their common level in 1 day’s time, which means that the
new function would forever be coincident with the old one (an
outcome that does not correspond to Jost’s law).

What Properties of Empirical Forgetting Functions Yield
Jost’s Law?

These considerations reveal that the mere curvilinearity of for-
getting functions is not the property that underlies Jost’s law. What
properties of empirical forgetting functions do underlie Jost’s law?
As Simon (1966) observed, one possibility is that the higher degree
of learning associated with the older forgetting function yields a
slower rate of forgetting (i.e., a longer half-life), in which case
Jost’s law would be compatible with exponential forgetting after
all. That is, even though the proportional rate of decay remains
constant as a function of time for both the old and the new
exponential forgetting functions, the older function will decay less
than the new one (in both proportional and absolute terms) from
their point of common strength. A second possibility is that the
degree of learning has no effect on the rate of forgetting, but as a
trace ages it loses strength at an ever-slower proportional rate. If
so, then the older trace would have a slower rate of forgetting
precisely because it is older than the younger trace, and forgetting
would not be exponential in form.

Figure 3 illustrates these two possibilities. The upper panel
shows two exponential functions of the form R(t) � N0e�kt, where
R(t) represents the number of items remembered at time t, N0

represents the degree of learning (i.e., the number of items encoded
at t � 0), and k represents the time constant (the value of which
determines the function’s half-life). As indicated above, if mem-
ories decay exponentially, the passage of time does not affect the
proportional rate of loss. Even so, Jost’s law holds in this example
because a higher degree of learning is associated with a slower
proportional rate of loss, and the older trace was initially learned
to a higher degree. The younger forgetting function in this example
has a half-life of approximately 5 units of time, whereas the older

Figure 2. An illustration of the decreasing absolute rate of loss associated
with curvilinear forgetting functions.

Figure 1. An illustration of Jost’s (1897) second law.

865ELUCIDATING JOST (1897)



forgetting function has a half-life of approximately 20 units of
time. Thus, when the functions intersect, the old function will
require much more time to fall to 50% of that common level of
performance than the younger one (in accordance with Jost’s law).

The lower panel of Figure 3 illustrates Jost’s law arising because
the proportional rate of forgetting decreases with age. Both func-
tions drop by 25% in the first 15 units of time, and both require
more than twice that amount of time to drop another 25% (i.e., the
rate of forgetting slows with the passage of time). Because the
proportional rate of loss is not constant over time, these functions
are not exponential in form. For this illustrative example, power
functions of the form R(t) � N1t�k were used, though many other
functions could have been used instead (such as the logarithm).
The parameter N1 represents the number of items remembered
after 1 unit of time, and the exponent k governs the initial rate of
decay, with a larger value of k yielding a faster proportional
decline. Unlike the situation depicted in the upper panel, the
degree of learning in this example is not assumed to affect the rate
of forgetting (i.e., both the older and younger functions have the
same exponent, k). Instead, Jost’s law holds because the older
trace, by virtue of its advanced age, has a slower proportional rate
of forgetting by the time the new trace is formed.

So which is it? Does a higher degree of learning reduce the rate
of forgetting, in which case Jost’s law could hold even if forgetting
were exponential in form, or are forgetting functions characterized
by an ever-decreasing rate of forgetting? Figure 4 presents repre-
sentative forgetting function data from Slamecka and McElree
(1983) that help to answer that question. As shown in the figure,
the higher degree of learning condition exhibits a 36% loss per day
over the 1st day (from 11.75 to 7.50 items recalled) and an 11.5%
loss per day over the next 5 days (from 7.5 to 4.0 items recalled).
Thus, these data do not exhibit the constant proportional rate of
loss that characterizes the exponential. Instead, the proportional
rate of forgetting decreases dramatically with the passage of time.
The same phenomenon is evident in the lower degree of learning
condition, which exhibits a 51% loss per day over the 1st day
(from 9.25 to 4.50 items recalled) and a much slower 13.8% loss
per day, on average, over the next 4 days (from 4.5 to 2.0 items
recalled).

The ever-slowing rate of decay evident in the forgetting func-
tions reported by Slamecka and McElree (1983) has been repeat-
edly confirmed by investigations into the mathematical form of
empirical forgetting functions. Wickelgren (1974, 1977), Ander-
son and Schooler (1991), and Wixted and Ebbesen (1991, 1997) all
suggested that empirical forgetting functions are most accurately
described by a power function, though Wixted and Ebbesen (1991)
also showed that the logarithm was a very close rival. Rubin and
Wenzel (1996) argued that four different functions were equally
viable (the logarithm, the power function, a hyperbolic-power
function, and an exponential-power function). Wickens (1998) and
White (2001) have also advocated the exponential-power function.
Although no single function stands out as being definitely superior
to the others, all of these investigations agree that (a) the simple
exponential (which requires a constant proportional rate of decay)
is not a viable candidate and (b) every viable candidate has the

Figure 3. Top: An illustration of Jost’s law arising because a higher
degree of learning results in a lower rate of forgetting (but the passage of
time does not). Bottom: An illustration of Jost’s law arising because the
passage of time results in a lower rate of forgetting (but a higher degree of
learning does not).

Figure 4. High and low degree of learning data as a function of retention
interval. The data illustrate the ever-decreasing proportional rate of loss, as
well as the lower proportional rate of loss associated with a higher degree
of learning. From “Normal Forgetting of Verbal Lists as a Function of
Their Degree of Learning,” by N. J. Slamecka and B. McElree, 1983,
Journal of Experimental Psychology: Learning, Memory, and Cognition, 9,
p. 392. Copyright 1983 by the American Psychological Association.
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property that yields Jost’s law of forgetting, namely, the propor-
tional rate of decay decreases with the passage of time (as illus-
trated in the lower panel of Figure 3).

Thus, it seems virtually certain that one of the properties of
empirical forgetting functions that Simon (1966) identified as
possibly contributing to Jost’s law of forgetting (viz., an ever-
slowing rate of forgetting) does, in fact, hold. What about the other
property? Does a higher degree of learning induce a slower rate of
forgetting? If so, that would also play a role because the older
function referred to in Jost’s law was initially learned to a higher
degree than the new one (cf. Figure 1). The empirical data shown
in Figure 4 suggest that the effect of the degree of learning may,
indeed, be relevant. Over the 1st day, the lower degree of learning
function drops by 51%, whereas the higher degree of learning
function drops by only 36%. After Day 1, the difference in the
proportional rate of decay as a function of degree of learning is
rather small (11.5% per day in the high degree of learning condi-
tion and 13.8% per day in the low degree of learning condition),
but the difference is still evident, and all of the forgetting functions
reported by Slamecka and McElree (1983) show similar propor-
tional trends. On the other hand, other data in the literature (e.g.,
Wixted & Ebbesen, 1991) exhibit a barely detectable effect of the
degree of learning on the rate of forgetting. After reviewing
evidence like this, Anderson (2000) concluded that a higher degree
of learning does not reliably result in a slower rate of forgetting,
but my own reading of the same evidence suggests that it does,
though the effect is modest (cf. Underwood & Keppel, 1963).

From data like these, we can conclude that Jost’s law may arise
for both of the reasons considered by Simon (1966), but the effect
of the passage of time on the rate of forgetting is dramatic and has
been repeatedly replicated, whereas the effect of degree of learning
on the rate of forgetting is smaller and less clearly established in
the literature. Thus, to unravel the theoretical significance of Jost’s
law, the main task is to explain why the rate of forgetting so
reliably decreases with the passage of time. That issue is the focus
of the rest of this article, and the possible explanations for that
phenomenon that have been advanced in the literature are consid-
ered next.

Why Does the Rate of Decay Decrease With the Passage
of Time?

The fact that empirical forgetting functions exhibit a decreasing
rate of decay does not necessarily mean that the underlying mem-
ory traces decay in a similar manner. In fact, of the four explana-
tions that have been proposed for the ever-slowing rate of forget-
ting associated with empirical forgetting functions, three are
consistent with the idea that the underlying memory traces decay
exponentially.

One possibility is that empirical forgetting functions exhibit a
decreasing rate of decay with the passage of time (and fail to show
a large effect of the degree of learning) only because of the nature
of the measurement scale. At the level of the underlying memory
traces, the exact opposite might be true. This could occur, for
example, if the measurement scale (e.g., percent correct) were
more sensitive to change when memory strength was high com-
pared with when it was low. As strength weakens with time, the
measurement scale would become progressively less sensitive,
thereby creating the false impression that the proportional rate of

change decreases with time. Similarly, a higher degree of learning
might induce a lower rate of forgetting at the level of the under-
lying memory trace, but this would be obscured by the fact that the
measurement scale is more sensitive to change when strength is
high. The idea that, in spite of appearances to the contrary, mem-
ory traces decay exponentially and a higher degree of learning
results in a lower rate of forgetting was advanced by Loftus
(1985b). According to this idea, the first of the two possibilities
mentioned by Simon (1966) applies at the level of underlying
memory traces (upper panel of Figure 3), even though empirical
forgetting functions correspond to the second of those two possi-
bilities (lower panel of Figure 3) because of a nonlinear measure-
ment scale. An important implication of this account is that the rate
of decay associated with individual memory traces does not
change over time (i.e., they decay exponentially), even though the
rate of decay associated with the empirical forgetting function
does.

A second explanation for the ever-decreasing rate of forgetting
associated with empirical forgetting functions is that the individual
memory traces that comprise an aggregate forgetting function each
decay exponentially but with vastly different half-lives (Sikström,
1999, 2002). If so, then the ever-slowing proportional rate of decay
evident in empirical forgetting functions would simply reflect the
survival of the fittest memory traces. According to this view, Jost’s
law arises because the old forgetting function is composed mainly
of slowly decaying traces (because the rapidly decaying traces
have already faded away), whereas the young forgetting function
is composed of a mixture of rapidly and slowly decaying traces (so
it decays relatively rapidly, on average). This intuitively plausible
explanation for Jost’s law was, in fact, taken for granted by
Slamecka (1985) when he said “one can view an older list as
having endured a more extended item-attrition experience than a
younger list, with the consequence that its remaining items are
hardier and more resistant to loss than are those of the younger
list” (p. 815). Again, the important implication of this view for the
present analysis is that the rate of decay associated with individual
memory traces does not change over time, even though the rate of
decay associated with the aggregate empirical forgetting function
does.

A variant of this idea yields a third (albeit very similar) expla-
nation for Jost’s law. The core assumption of this account is that
forgetting functions descend to an asymptote greater than zero.
Jost’s law is explained by assuming that a higher degree of
learning results in a higher asymptotic level of memory perfor-
mance. An old forgetting function, having decreased considerably
with the passage of time, would be relatively close to its high
asymptote (and, so, would essentially decay no further). By con-
trast, a new forgetting function that is momentarily at the same
level of strength as the old forgetting function would, with the
further passage of time, descend towards its own (lower) asymp-
tote. Hence, Jost’s law.

The idea that forgetting functions descend to an asymptote
greater than zero was recently proposed by Rubin, Hinton, and
Wenzel (1999). They showed that forgetting from long-term mem-
ory (LTM) can be accurately described by an exponential function
that includes a third parameter that represents a nonzero asymp-
tote. In fact, as described in more detail later, the three-parameter
exponential (unlike its two-parameter counterpart) describes em-
pirical forgetting functions every bit as well as the power law does.
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At the level of underlying memory traces, the simplest model for
an exponential decay to nonzero asymptote would hold that some
traces decay exponentially, perhaps all with the same half-life,
whereas other traces are permanent and do not decay at all. Unlike
the continuous distribution of half-lives discussed above, the half-
life distribution in this case would be bimodal, with one mode
being a finite half-life and the other “mode” being an infinitely
long half-life. As before, the relevant implication of this account is
that one need not assume that the rate of forgetting associated with
individual traces changes in any way with the passage of time. The
permanent traces are forever permanent, and the decaying traces
always decay exponentially with an unchanging half-life.

A fourth and quite distinct possibility is that the memory traces
themselves decay to a lesser degree the longer they manage to
survive. According to this view, the properties of the empirical
forgetting function actually do correspond to the properties of the
underlying memory traces. If so, young traces all fade relatively
rapidly, but they fade less rapidly as they age (in which case
forgetting would not be exponential in form, even at the level of
the underlying trace). One reason why memories might decay less
rapidly with age is because they become less vulnerable to the
forces of retroactive interference (RI) as a result of consolidation.
The first empirical report suggesting that traces do, in fact, become
less vulnerable to RI over time was published by Adolf Jost’s
mentor, Georg Müller, in 1900 (Müller & Pilzecker, 1900). How-
ever, shortly thereafter, the field of experimental psychology
adopted the view that forgetting occurs mainly when new associ-
ations are added to a retrieval cue—that is, that forgetting is caused
by cue overload (Watkins & Watkins, 1975)—not because fragile
traces are compromised before they have had a chance to consol-
idate. In fact, for the most part, interference theorists explicitly
rejected the idea that hypothetical consolidation process has any-
thing at all to contribute to the understanding of forgetting. But the
notion of consolidation may provide the key to understanding
Jost’s law, in which case the dominant cue-overload view of
forgetting may need to be reevaluated.

These competing explanations for the ever-slowing rate of de-
cay associated with empirical forgetting functions (i.e., these com-
peting explanations of Jost’s law) have never been differentially
evaluated. In fact, all previous theoretical treatments of Jost’s law
have amounted to little more than a sentence or two (e.g., Sik-
ström, 2002; Slamecka, 1985; Wixted, 2004; Woodworth, 1938;
Woodworth & Schlosberg, 1954). This is a curious state of affairs
because my own reading of the literature is that a century of work
in the fields of psychology and neuroscience has produced a body
of knowledge that is sufficiently complete to finally distinguish
between them. In what follows, each of these four possible expla-
nations for the ever-slowing rate of forgetting is considered in
more detail and in light of the relevant empirical evidence.

Measurement Scale Artifacts

The possibility that Jost’s law arises because of a measurement
scale artifact is considered only briefly because it has already been
considered in great detail in the literature (Bogartz, 1990; Loftus,
1985a, 1985b; Loftus & Bamber, 1990; Slamecka, 1985; Wixted,
1990). As indicated above, Loftus (1985b) argued that the strength
of memories may not decay at an ever-decreasing rate, even
though empirical forgetting functions exhibit that property. In-

stead, the passage of time may have no effect on the proportional
rate of decay (i.e., memories might decay exponentially). Accord-
ing to this view, Jost’s law holds for the reasons depicted in the
upper panel of Figure 3, even though it appears to hold for the
reasons depicted in the lower panel. The illusion arises because the
measurement scale is more sensitive to change when strength is
high compared with when it is low (much as a fuel gauge might
indicate that the level of gasoline is changing a rate that does not
correspond to the true rate of change).

The possibility that Jost’s law arises only because a higher
degree of learning results in a slower rate of forgetting at the level
of the underlying memory trace and not because of an ever-
slowing rate of decay at that level is challenged by several obser-
vations. First, almost all forgetting functions exhibit a pronounced
decreasing rate of decay with the passage of time no matter what
the measurement scale happens to be (percent correct, savings,
priming, hits minus false alarms, etc.). It is, of course, possible that
all of these scales create the same kind of measurement distortion,
but such a coincidence would be surprising. Second, some mea-
surement scales are theoretically linear with respect to the under-
lying trace. Given the assumptions of signal detection theory, for
example, d� provides a linear measurement scale (Loftus, 1985b).
A signal-detection account of recognition memory is not univer-
sally accepted, but it has been the dominant view for decades. And
recognition forgetting functions using d� as a dependent measure
exhibit the same decreasing rate of forgetting that is observed
when any other dependent measure is used (Wixted & Ebbesen,
1997). This holds true even when one allows for the possibility of
an unequal-variance detection model. Thus, given the assumptions
of signal detection theory, at least, the ever-decreasing rate of
decay evident in empirical forgetting functions does not appear to
be a measurement scale artifact. Instead, memory traces, at least in
the aggregate (which is what forgetting functions represent), ap-
pear to exhibit a decreasing proportional rate of decay with the
passage of time.

Item Variability

Even if empirical forgetting functions faithfully reflect the ag-
gregate strength of underlying traces (i.e., even if measurement
scale issues do not complicate the analysis), they may not faith-
fully reflect the properties of individual memory traces. The sec-
ond explanation for Jost’s law of forgetting holds that traces decay
exponentially, all toward an asymptote of zero, but they do so with
widely varying half-lives. According to this view, the ever-slowing
proportional rate of decay evident in most aggregate forgetting
functions merely reflects survival of the fittest memory traces.
After a time, all of the surviving memory traces have a low
likelihood of failure, not because they once were fragile and now
are sturdy, but because they were sturdier than the other (now
failed) traces all along.

The idea that items differ in durability may be driven by the
incontrovertible intuition that some items on a list are much more
memorable than others. Although this would seem to indicate that
items differ greatly in their underlying temporal properties, it
might instead mean that they differ greatly in the degree to which
they are initially learned. As an analogy, amnesic patients are often
said to forget very quickly because they cannot remember a
meeting that took place 30 min ago (Wixted, in press). But these
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patients actually have a normal rate of forgetting (McKee &
Squire, 1992). Their impairment lies mainly in an inability to
encode new information in the first place. Thus, even though
intuition suggests that unimpaired subjects have a vastly lower rate
of forgetting than patients with amnesia, the difference actually
lies in the degree of initial registration. The same might apply to
items that differ greatly in memorability. The mere fact that some
items are much more likely to be remembered after a delay than
others does not in and of itself demonstrate that items differ greatly
in the rate at which they are forgotten.

If items do differ substantially in their decay rates in addition to
differing in their degree of initial registration, then one might
expect to see dramatically different decay rates for classes of items
that differ substantially in how meaningful they are (or that differ
along some other important dimension). Underwood and Postman
(1960) performed a relevant experiment by comparing the rates of
forgetting over a period of 1 week for a list of three-letter common
words versus a list of meaningless three-letter trigrams. To their
surprise, they found that the rate of forgetting for the meaningful
words was the same as that for the meaningless trigrams. The lists
differed mainly in how easily they were initially learned, with
words taking significantly less time to encode than nonwords.
Keppel (1968) reviewed a broader array of evidence suggesting
that, with degree of learning equated, variables such as word
frequency, meaningfulness, and association value have no effect
on the rate of forgetting. Slamecka and McElree (1983) also
conducted an item analysis and found that the most easily encoded
words had about the same rate of decay as their less easily encoded
counterparts, even when the degree of learning was not equated.
Thus, direct evidence that items, once encoded, have substantially
different rates of decay is hard to come by. By contrast, direct

evidence that they differ in the degree of initial learning is
widespread.

Findings like these raise the intriguing possibility that items do
not differ greatly in their rates of decay even though they differ
greatly in the degree to which they are initially learned (which
accounts for differences in apparent durability). Still, one might
wonder about how much variability in the rates of decay across
items one needs to assume in order to accommodate some of the
basic facts about the time course of forgetting.

An analysis of empirical forgetting functions often yields a
pattern that is hard to explain by assuming that individual items
decay exponentially with varying half-lives. That pattern consists
of a forgetting function that is fit extremely well by a power
function with a small exponent (such as �0.13) while, at the same
time, being very poorly described by the exponential (which pro-
vides a fit that barely exceeds the fit provided by a straight line).
This pattern is not always observed, but it is observed often enough
that it needs to be explained in order for the item variability
account to remain viable. It is, for example, the pattern that
corresponds to Ebbinghaus’s (1885/1913) famous savings function
(Anderson, 2000, p. 227) and to the word recall and face recog-
nition forgetting functions reported by Wixted and Ebbesen
(1991).

To investigate this matter, a variety of Monte Carlo simulations
were performed in which exponential half-lives were assumed to
be distributed according to particular distributions. In each simu-
lation, a large number of exponential functions with half-lives
drawn from a particular distribution were averaged together (just
as averaging is involved in the analysis of empirical data), and the
resulting aggregate function was fit with a power function, an
exponential function, and a straight line. Table 1 presents repre-

Table 1
Aggregate Forgetting Function Characteristics for Various Settings of the Scale and Shape
Parameters of the Weibull Distribution of Exponential Half-Lives

Scale Shape �.95/�.05 Line Exp Power a b

1 0.4 2.6 � 104 72.5 96.4 99.0 0.45 0.68
1 0.3 7.7 � 105 78.9 93.5 99.2 0.41 0.49
1 0.2 6.8 � 108 83.8 90.8 99.5 0.39 0.30
1 0.1 4.6 � 1017 86.6 88.5 99.9 0.37 0.12

10 0.4 2.6 � 104 85.8 94.2 98.4 0.75 0.36
10 0.3 7.7 � 105 86.0 92.3 99.1 0.65 0.27
10 0.2 6.8 � 108 86.6 91.0 99.4 0.55 0.19
10 0.1 4.6 � 1017 86.4 88.7 99.9 0.45 0.10

100 0.4 2.6 � 104 91.3 94.4 98.0 0.90 0.17
100 0.3 7.7 � 105 90.2 92.9 98.7 0.81 0.15
100 0.2 6.8 � 108 89.0 91.6 99.3 0.68 0.13
100 0.1 4.6 � 1017 87.5 88.9 99.8 0.53 0.08

1,000 0.4 2.6 � 104 93.4 95.0 97.5 0.97 0.07
1,000 0.3 7.7 � 105 91.8 93.5 98.6 0.91 0.08
1,000 0.2 6.8 � 108 89.9 92.5 99.3 0.79 0.08
1,000 0.1 4.6 � 1017 88.2 90.7 99.7 0.61 0.06

10,000 0.4 2.6 � 104 94.5 95.0 97.9 0.99 0.03
10,000 0.3 7.7 � 105 93.0 93.7 98.6 0.95 0.04
10,000 0.2 6.8 � 108 90.5 91.5 99.4 0.86 0.05
10,000 0.1 4.6 � 1017 87.6 88.6 99.9 0.68 0.05

Note. The table shows the ratio of exponential half-lives at the 95th and 5th percentiles of the distribution
(�.95/�.05), the percentage of variance accounted for by a straight line, the exponential (Exp), and the power
function when fit to the resulting aggregate forgetting function, as well as the values of the two parameters (a
and b) of the best-fitting power function of the form at�b.
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sentative results of one such analysis. In this analysis, the half-
lives of exponential forgetting functions were assumed to be
distributed according to a two-parameter Weibull distribution.
After setting the shape and scale parameters of the Weibull distri-
bution, 2,000 exponential forgetting functions with half-lives
drawn from that distribution were generated and then averaged
together to create the aggregate function. As shown in Table 1,
settings for the Weibull distribution of exponential half-lives can
be found that yield an aggregate forgetting function that is ex-
tremely well fit by the power function with a small exponent and
that is so poorly fit by the exponential that it barely outperforms a
straight line. However, the required variability is rather large. To
provide an idea of how much variability in exponential half lives
is required for this pattern to emerge, the table also shows the ratio
of the half-life value at the 95th percentile of the cumulative
Weibull distribution (�.95) to the half-life value at the 5th percen-
tile of the distribution (�.05). These values can be obtained by
solving the following cumulative Weibull distribution function for
� (the half-life), first with p � .95 and then with p � .05: p � 1 �
exp[(��/scale)shape].

As an example, in the first line of Table 1, the scale parameter
of the Weibull was set to 1 and the shape parameter to 0.4. Thus,
the half-life at the 95th percentile of the cumulative Weibull is
found by solving the following equation for �.95: .95 � 1 �
exp[(��.95/1)0.4], and the half-life at the 5th percentile of the
cumulative Weibull is found by solving the following equation for
�.05: .05 � 1 � exp[(��.05/1).4] .

In this case, �.95 is found to be approximately 15.5 and �.05 is
found to be approximately 0.0006 (the time scale is arbitrary).
Thus, the ratio of these two half-lives (�.95/�.05) is approximately
26,068. Generally speaking, for the two-parameter Weibull distri-
bution, �.95/�.05 � [log(.05)/log(.95)]1/shape (i.e., relative variabil-
ity in half-lives is a function of the shape parameter only).

In spite of the rather extreme degree of half-life variability when
the scale parameter is set to 1 and the shape parameter to 0.4, the
pattern of interest (i.e., the power function fitting the aggregate
function extremely well, with the exponential barely outperform-
ing the straight line) is not in evidence. That is, in the first line of
Table 1 (and in every case in which the shape parameter is set to
0.4), the power function outperforms the exponential, but it exhib-
its systematic deviations from the aggregate forgetting function,
and the exponential still fits the data reasonably well (and quite a
bit better than the straight line). However, the pattern of interest
does begin to emerge when the variability in exponential half-lives
becomes even greater as the shape parameter becomes smaller.
When the half-life variability is extreme, the pattern is clearly
evident. Thus, averaged exponentials can yield a power function
like those often seen in real data (e.g., Ebbinghaus, 1885/1913),
but extreme variability is needed. Similar conclusions are reached
when the underlying distribution of exponential half-lives is as-
sumed to follow a log-normal or a pareto distribution. Sikström
(1999, 2002) investigated a similar issue in detail as well, and he
also found that a great deal of variability in exponential half-lives
of item features was needed to produce a credible power function
in the aggregate.

The important point to make here is that the large variability in
exponential forgetting rates that appears to be needed to produce a
power function with a small exponent must be considered against
empirical evidence suggesting that items with very different prop-

erties tend to decay at the same rate (Keppel, 1968). Perhaps some
distribution of exponential half lives with only a small amount of
variability will eventually be found that yields a credible power
function with a small exponent. Or perhaps some property of items
other than meaningfulness (or frequency) will be found which,
when manipulated, yields very large differences in forgetting rates.
In the absence of those developments, however, the idea that a
typical empirical forgetting function reflects averaged exponen-
tials seems hard to sustain.

Do Forgetting Functions Decay to Nonzero Asymptotes?

A third possible reason why the proportional rate of forgetting
decreases with the passage of time is that forgetting functions
decay (exponentially perhaps) to a nonzero asymptote (Rubin et
al., 1999). According to this view, Jost’s law of forgetting follows
from the fact that the older forgetting function, having been
learned to a higher degree, descends to a relatively high asymptote.
Thus, when the strengths of the old and new forgetting functions
coincide, the old one has little room to decay any further.

The simplest explanation for a function that decays exponen-
tially to a nonzero asymptote is that some items decay with a
constant half-life whereas other items do not decay at all. Like the
Weibull distribution of half-lives considered earlier, the half-life
distribution in this case would still be extremely variable, but the
distribution of half-lives would be quite simple (namely, a bimodal
distribution, with one mode being a finite half-life and the other
being an infinitely long half-life). The idea that forgetting func-
tions descend to an asymptote greater than zero has recently been
advanced in the literature (Rubin et al., 1999), so it is worth
considering the relevant evidence in some detail.

As indicated earlier, empirical forgetting functions are often
accurately described by the power function and poorly described
by the exponential. However, if one allows for the possibility of a
nonzero asymptote by adding a third parameter, then the exponen-
tial rivals the power law in terms of its ability to fit the data. Data
reported by Wixted and Ebbesen (1991), which are reproduced in
Figure 5, illustrate this point. In this experiment, subjects studied
short lists of words that were followed by a filled retention interval
ranging from 2.5 to 40.0 s. Degree of learning was varied by
manipulating rate of word presentation. The upper panel of Fig-
ure 5 shows that both the high degree of learning data and the low
degree of learning data are extremely well fit by the power func-
tion. Note that these data also reinforce a point made earlier about
the effect of the degree of learning on the rate of forgetting.
Specifically, with regard to empirical forgetting functions, a higher
degree of learning does not have a large effect on the rate of
forgetting (though it does have some effect). The power-function
exponent in the high degree of learning condition is slightly lower
than the corresponding value in the low degree of learning condi-
tion, but, in this case, the difference is not significant.

The lower panel of Figure 5 shows how well the three-parameter
exponential-decay-to-nonzero-asymptote describes the same recall
data. It is obvious that the addition of a nonzero asymptote allows
the exponential to fit these data very well (every bit as well as the
power function), and this is not merely due to the fact that it has
more free parameters. When the power function was fit to these
data, two parameters were estimated for each condition (for a total
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of four free parameters across the two fits). Only four free param-
eters were used across the two fits for the exponential functions as
well. Although the exponential has three free parameters, two were
constrained to have the same value across conditions for these fits.
Only the asymptote was free to differ for the low and high degree
of learning conditions. The fits are undeniably excellent, but they
suggest that the upper function declines to an astonishingly high
asymptote of 56% correct and the lower function to a less aston-
ishing, but still remarkably high, asymptote of 39% correct. Per-
haps some other fitted function would project to low, but still
nonzero, asymptotes that would seem less implausible, but I have
yet to find such a function.

Results like these may explain why the default assumption in the
field is usually that forgetting functions decline toward an asymp-
tote of zero. In fact, this seems to be the view of almost everyone
who has ever investigated the mathematical form of forgetting
(e.g., Anderson & Schooler, 1991; Ebbinghaus, 1885/1913; Rubin
& Wenzel, 1996; White, 2002; Wickelgren 1974, 1977; Wickens,
1998; Wixted & Ebbesen, 1991, 1997), all of whom considered
only functions that eventually decline to zero. On the other hand,

Rubin et al. (1999) and, before him, Bahrick (1984), seriously
considered the possibility that forgetting functions descend toward
an asymptote greater than zero. To those who find the idea of
nonzero asymptotes appealing, the burden of proof might seem to
rest with those who believe otherwise. It would be nice if some
empirical evidence could be brought to bear on the issue, and there
are at least two sets of data in the literature that can be exploited
for this purpose.

Rubin et al. (1999) conducted a one-of-a-kind study that in-
volved 300 subjects and 10 different retention intervals. Subjects
were exposed to a continuous paired-associates task, and recall for
a previously presented pair was tested at lags ranging from 0
intervening pairs to 99 intervening pairs. The result was the
most complete and most precise forgetting function in the
literature. Rubin et al. (1999) fit several two-parameter func-
tions to the data and found that although the power function
accounted more variance than its competitors (97%), it exhib-
ited obvious systematic deviations and could be rejected on
those grounds. A five-parameter sum of exponentials was sug-
gested as an alternative because it fit the data extremely well
and without any apparent systematic deviations. The five-
parameter exponential tentatively proposed by these authors
was as follows: R�t) � p1e

�p
2
t � p3e

�p
4
t � p5, where p1 through

p5 represent free parameters.
As Rubin et al. (1999) observed, there are several reasons for

believing that the first two-parameter exponential function (involv-
ing parameters p1 and p2) reflects a rapid decay to zero from
short-term memory (STM), whereas the second, three-parameter
exponential function (involving parameters p3, p4, and p5) reflects
forgetting to a nonzero asymptote from LTM. Because of its large
time constant ( p2 was approximately equal to 0.87), the first
exponential function mainly affects the fit over the first two
retention intervals only, and those two retention intervals are so
short (zero or one intervening item) that few would doubt that
retrieval from STM was involved. In addition, the reaction times
associated with those two retention intervals were qualitatively
faster than the reaction times for the remaining eight retention
intervals, and it is known from prior research that retrieval from
STM is faster than retrieval from LTM. As Rubin et al. (1999) put
it, “[t]he reaction time data also support the claim that Lag 0, and
possibly in the recall conditions Lag 1, depend heavily on working
memory. . .the reaction times from these lags are much shorter
than those from all the later lags, which are similar to each other”
(pp. 1172–1173). As shown in the upper panel of Figure 6, when
the first two points are excluded, the remaining eight points are
extremely well fit by the three-parameter exponential that, hypo-
thetically, captures decay from LTM. This is the same exponential
function that accurately describes the LTM data from Wixted and
Ebbesen (1991), as shown in Figure 5.

The power law of forgetting is typically applied to data that
reflect forgetting from LTM, so one might wonder about its ability
to describe these 8 data points as well. A three-parameter version
of the power law that was originally proposed by Wickelgren
(1974), one that can be fairly compared to the three-parameter
exponential, is R(t) � N0(�t � 1)�k, where N0 is the degree of
learning parameter at t � 0, k is the proportional rate of forgetting
parameter, and � is a scaling constant that is needed because time

Figure 5. Top: Least-squares fits of the power function to high and low
degree of learning data reported by Wixted and Ebbesen (1991). Bottom:
Least-squares fit of the exponential-decay-to-nonzero-asymptote to the
forgetting data reported by Wixted and Ebbesen (1991). From “On the
Form of Forgetting,” by J. T. Wixted and E. Ebbesen, 1991, Psychological
Science, 2, p. 411. Copyright 1991 by Blackwell. Adapted with permission.
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is measured in arbitrary units.1 This function declines to an as-
ymptote of zero, and the lower panel of Figure 6 shows the least
squares fit of this function to the 8 relevant data points from Rubin
et al. (1999). Obviously, the three-parameter power function fits
the data as well as the three-parameter exponential, so a choice
between them based on goodness of fit is not possible.

Figure 6 reveals that we face here the same dilemma we faced
earlier with respect to the data reported by Wixted and Ebbesen
(1991). Specifically, two functions that fit the data equally well are
in fundamental conflict on one theoretically fascinating point. The
exponential implies that this forgetting function declines to a
nonzero asymptote, whereas the power function implies that it will
eventually decline to zero. And in this case, the exponential’s
estimated asymptote of 11% correct may not seem unreasonably
large (though it does to me). To determine which equation pro-
vides the better estimate of the projected level of performance, one
would like to see one more long retention interval added to the
design. Although we obviously cannot add anything to the study
now, there are enough data points that we can retrospectively
perform this exact kind of experiment.

The predictive capabilities of the three-parameter exponential
and the three-parameter power function were tested by fitting both
to the first 5 of the 8 LTM data points to see how well they

predicted where the next 3 data points would fall. The equations
were then fit to the first 6 data points to see how well they
predicted where the next 2 data points would fall, and then to the
first 7 to see how well they predicted where the final data point
would fall.

As described in detail by Myung and Pitt (2002), a test of the
predictive abilities of competing functions is much more compel-
ling than the traditional goodness-of-fit test based on the percent-
age of data variance accounted for. The reason is that even func-
tions with the same number of free parameters differ in their ability
to adjust themselves to accommodate error variance (i.e., functions
differ in flexibility). A function that accounts for a high percentage
of variance because of its high flexibility will pay a price in its
ability to predict the future course of the data. As Myung and Pitt
(2002; Pitt, Kim, & Myung, 2003) showed, this problem can be
illustrated by fitting a function with n free parameters to n data
points. The fitted function will account for 100% of the variance,
but because some of the variability in the data is attributable to
error variance, even the correct function will have accommodated
itself to that error in order to account for all the data variance. As
a result, it will make incorrect predictions.

As the number of data points to be fit exceeds the number of free
parameters, an incorrect but flexible function will continue to
capitalize on error variance (and will continue to make incorrect
predictions about the future path of the data). However, the correct
function will settle down and begin to make more accurate pre-
dictions. As shown below, fitting the three-parameter power func-
tion and the three-parameter exponential to at least 5 data points
appears to be sufficient for the former to make accurate
predictions.

Figure 7 shows the results of this fitting exercise for the three-
parameter exponential. The top panel shows the least squares fit ofFigure 6. Least-squares fits of the three-parameter exponential (top) and

three-parameter power function (bottom) to forgetting data reported by
Rubin et al. (1999). Lag is measured in the number of intervening items.
VAF � variance accounted for.

1 It is worth noting that the three-parameter power function is often
indistinguishable from the two-parameter power function that is more
commonly fit to forgetting data. The functions differ only when t is small
because as �t becomes large relative to 1 as t increases, the parenthetical
sum, �t � 1, becomes approximately equal to �t, so the equation reduces
to R(t) � N0(�t)�k, which can be rewritten in the more familiar form:
R(t) � N1t�k, where N1 � N0��k. Depending on the specific values of �
and k, the two- and three-parameter versions of the power function may
converge rapidly or slowly as t increases. For the data reported by Wixted
and Ebbesen (1991), the parameter values are such that the functions
converge quite quickly, so the two-parameter version fits the data about as
well as the three-parameter version. For the data reported by Rubin et al.
(1999), the three-parameter version of the power function is needed to fit
the data because the parameters are such that �t � �t � 1 only when t
becomes fairly large. This does not seem problematic here because the
competing function (namely, the exponential) also has thee parameters.
The three-parameter power function has desirable properties that address a
common criticism of the two-parameter version of this equation (e.g.,
Rubin et al., 1999; Wickens, 1998). Whereas the two-parameter version
explodes to infinity as t approaches zero (which is problematic), the
three-parameter version contains a true “degree of learning” parameter (N0)
that reflects the estimated level of performance at t � 0 based on retrieval
from LTM. The three-parameter version is the conceptually complete
version of the power function, but the two-parameter version is often used
in practice simply because it can be without any appreciable loss of
descriptive accuracy.
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this function through the first 5 data points. The next three panels
show the least squares fit of this function to 6, 7, and 8 data points,
respectively. Two important points need to be emphasized about
these fits. First, the three-parameter exponential provides an ex-
cellent fit (accounting for nearly 100% of the variance) without

systematic deviations in every case. Thus, one would never con-
sider rejecting this function on those grounds (though, in light of
recent work by Myung & Pitt, 2002, one might not be terribly
impressed by this result either). Second, the estimated asymptote
declines systematically as each new retention interval is added.
This is not a sensible outcome, and it is no great stretch of the
imagination to assume that the trend would continue if additional
(even longer) retention intervals were added to the design. The fact
that the asymptote changes systematically as each new retention
interval is added suggests that this equation does not accurately
characterize the time course of forgetting. An asymptote does not
decline; it is the point to which the function itself supposedly
declines. The upper panel of Figure 8 shows all four fits on the
same graph, and the systematically decreasing asymptote is visu-
ally apparent.

The same least squares fitting exercise was repeated with the
three-parameter power function, and the results are shown in the
lower panel of Figure 8. Like the exponential, this function fits the
data extremely well in every case. Unlike the exponential, the
power function is reasonably accurate in predicting where the data
from each new retention interval will fall. Indeed, the successive
fits yield functions that fall virtually atop one another as each new
retention interval is introduced. This analysis provides evidence
that the forgetting function really is on a trajectory toward an
asymptote of zero.2 The same analysis was also performed by
means of maximum likelihood estimation instead of least squares,
and the results were visually identical (though the exact parameter
estimates differed very slightly).

I do not mean to imply that this analysis proves beyond all doubt
that forgetting functions learned in the laboratory descend to an
asymptote of zero. The data were averaged over subjects, for
example, and it is conceivable that averaging artifacts were re-
sponsible for the outcome of this test. Still, the successive fitting
test described above provides evidence that weighs in favor of the
idea that forgetting functions decline toward an asymptote of zero.

Even if one accepts the claim that forgetting functions based on
lists of words learned in the laboratory decline to an asymptote of
zero, one might still hold to the idea that more substantial learning
(such as the kind of learning that takes place in school) will yield
forgetting functions that decline to a true nonzero asymptote.
Indeed, Bahrick’s (1984) famous concept of “permastore,” which
is based on tests of memory for Spanish words over the course of
a lifetime, is a concept that is sometimes construed as being
equivalent to the idea that forgetting functions decline to a nonzero

Figure 7. Successive fits of the three-parameter exponential to different
subsets of the 8 data points reported by Rubin et al. (1999, Table A1,
Column “All 3”) that reflect forgetting from long-term memory. The top
panel shows a fit through the first 5 points, and the next three panels show
how the fits change each time an additional data point is added. Lag is
measured in the number of intervening items. VAF � variance accounted for.

2 A similar analysis could have been performed on the recognition data
reported by Rubin et al. (1999), but those data are problematic because the
false alarm rate increased dramatically throughout the course of the exper-
imental session, from approximately 35% at the beginning to nearly 80%
at the end. Given this increasing trend, the longer retention intervals, which
were necessarily tested later in the session, were unavoidably associated
with a larger false alarm rate than the shorter retention intervals. However,
the nature of the design did not allow for an assessment of retention
interval-specific false alarm rates. Instead, a single false alarm rate, aver-
aged across the entire session, was used. This has the effect of systemat-
ically distorting the retention estimates at the longest retention intervals.
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asymptote. Does Bahrick’s (1984) amazing forgetting function
provide strong evidence for that? Not really.

The upper panel of Figure 9 shows the data from Bahrick’s
(1984) study with the least squares fit of the three-parameter
exponential drawn through the data. Bahrick (1984) actually re-
ported separate long-term forgetting functions for 10 different
subtests of the Spanish test, but those data were averaged into a
single function for purposes of this analysis. Before averaging, the
score for each subtest was converted to a percentage scale, with
zero representing the performance of control subjects who had
never taken a Spanish class and 100 representing the maximum
possible score on the subtest (following Hintzman, 1990). The
averaged data are somewhat variable, but the three-parameter
exponential accounts for 90% of the variance and seems to faith-
fully convey the permastore story. That is, forgetting occurs at a
rapid rate over the first 5 years or so, but then levels off to an
asymptote well above zero (which, one might argue, represents
permastore).

The lower panel of Figure 9 shows the same data fit with the
three-parameter power function. Once again, for the third time, we
see that the power function rivals the three-parameter exponential
in its ability to describe forgetting from LTM. It was true of the
data reported by Wixted and Ebbesen (1991), which spanned a
range of only 40 s; it was true of the data reported by Rubin et al.
(1999), which spanned a range of approximately 10 min; and is

true of the data reported by Bahrick (1984), which spans a range
of 50 years.

Adding a fourth parameter to the power function to allow for a
nonzero asymptote does not significantly (or even appreciably)
improve the fit. Thus, the good fit provided by the power function,
coupled with the failure of that fourth parameter to improve the fit
at all, suggests that Bahrick’s (1984) data may not decline to a
nonzero asymptote. Further evidence for this can be found in
Figure 10. This figure shows the results of a successive fitting
exercise like that performed on the data from Rubin et al. (1999)
shown in Figure 8. Specifically, the upper panel shows the results
of four separate fits of the three-parameter exponential to Bahr-
ick’s (1984) data. The first fit involved the first six points only, and
it yielded the highest estimated asymptote (26.6%). The next fit
involved the first seven points, and the estimated asymptote
dropped slightly (to 25.5%). The next fit involved the first eight
points, and the estimated asymptote dropped slightly yet again (to
24.5%). The lowest estimated asymptote was obtained when all
nine points were fit (23.5%). Thus, as with Rubin et al.’s (1999)
data, the estimated asymptote drops systematically each time a
longer retention interval is added (as might be expected if the
forgetting function is on a trajectory toward zero). When this
successive fitting exercise was repeated using the three-parameter
power function (shown in the lower panel of Figure 10), it is clear

Figure 8. Top: Successive fits of the three-parameter exponential to
different subsets of the 8 data points reported by Rubin et al. (1999) that
reflect forgetting from long-term memory. These are the same fits shown
in Figure 7, now shown on one graph. Bottom: Successive fits to the same
data of the three-parameter power function.

Figure 9. Least-squares fits of the three-parameter exponential (top) and
three-parameter power function (bottom) to forgetting data reported by
Bahrick (1984).
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that virtually the same path is predicted each time a longer reten-
tion interval is added. Beginning this fitting exercise with even
fewer than 6 points leads to inaccurate predictions for both the
power function and the exponential, presumably because the data
are rather variable, and the more variable the data are, the more
points are needed for even the correct function to provide accurate
predictions. The notable finding is that the power function begins
to make essentially the same (accurate) prediction about the future
course of the function when enough points are fit to constrain it,
whereas the exponential continues to make systematic errors of the
kind that would be expected if the data were on a trajectory toward
an asymptote of zero. When these analyses were repeated using
maximum likelihood estimation instead of least squares, virtually
identical results were obtained. The estimated asymptote of the
exponential declines monotonically from 25.9% to 23.6% across
the four fits, whereas the four estimated power functions are
superimposed and appear to be only one function.

These results weigh against the idea that forgetting functions fall
to a nonzero asymptote, but they do not seem to be greatly at odds
with the notion of permastore. As indicated earlier, the propor-
tional rate of forgetting associated with the power function de-
clines with the passage of time such that, after many years, the
decay rate would be negligible. Indeed, from Years 20 to 50, the

predicted decline derived from the best-fitting power function is
from 23.1% correct to 20.1% correct (a difference of only 3% over
30 years). Thus, the difference between the notion of permastore
and the idea that forgetting proceeds according to a power law is
the difference between no further forgetting and a negligible
amount of additional forgetting. Although this difference is of
great theoretical interest, it is of no practical interest. As Bahrick
(1984) said, “[i]t is important to point out that the term permastore
has been used here without any intended structural implications. It
simply refers to the finding that much of the information in
memory has a life span of several decades” (p. 24). The idea that
forgetting proceeds according to a power law reinforces rather than
challenges this idea. The main point I am making here is that
Bahrick’s data offer no reason to believe that the data do not
decline to an eventual asymptote of zero (though the asymptote
would be approached only if people lived for hundreds of years).
In fact, those data weigh in favor of the idea that forgetting
proceeds toward an asymptote of zero. In a similar vein, Squire
(1989) presented data on memory for one-season television pro-
grams that had aired during a single year from 1 to 15 years ago,
and he concluded that “forgetting in very long-term memory can
be gradual and continuous for many years after learning” (p. 241).
The analyses presented here reinforce that conclusion as well.
Even “flashbulb memories” are no longer regarded as the perma-
nent entities they were once thought to be (e.g., Schmolck, Buf-
falo, & Squire, 2000). Instead, they decay as other memories do.
Thus, on balance, the evidence weighs against the idea that Jost’s
law holds because an old forgetting function (associated with a
relatively high degree of learning) declines to a higher asymptote
than the young forgetting function.

Do Memory Traces Become More Robust With the
Passage of Time?

The fourth possible explanation for the ever-decreasing rate of
decay associated with empirical forgetting functions is that the
underlying memory traces themselves individually exhibit an ever-
decreasing rate of decay. Jost’s law would then be a manifestation
of that process.

Why would memories become more resistant to decay with the
passage of time? Quite possibly for the same reason that Ribot’s
law holds. That is, memories become more resistant to the effects
of disruptive forces with the passage of time because of the effects
of consolidation (Wickelgren, 1974). This is true whether the
disruptive forces involve damage to the brain or interference from
subsequent learning (i.e., RI). Ribot’s law looks backward in time;
Jost’s law looks forward. But, according to this view, they are both
based on the same underlying process: Memories become less
vulnerable to the forces of disruption as they consolidate with the
passage of time.

If traces do become less vulnerable to interference as they age,
then the idea that individual memory traces decay exponentially,
which is an idea that all three accounts of Jost’s law reviewed
above have in common, becomes difficult to sustain. The expo-
nential assumes a constant half-life, and a half-life that remains
unchanged even though memory traces become less vulnerable to
the forces of interference is something of a contradiction. If traces
fall prey to the forces of RI (as they surely do), and if those traces
become less vulnerable to RI as they age, then the half-life of a

Figure 10. Top: Successive fits of the three-parameter exponential to
different subsets of the data reported by Bahrick (1984). Bottom: Succes-
sive fits to the same data of the three-parameter power function.
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memory trace should increase with age and forgetting would not
be exponential in form. Moreover, Jost’s law of forgetting would
naturally follow.

The idea that memories consolidate and become less vulnerable
to the forces of traumatic brain injury is widely accepted, at least
by neuroscientists. By contrast, the idea that they become less
vulnerable to the forces of ordinary RI as a result of consolidation
has been widely and explicitly rejected, at least by psychologists.
The probable reason for this rejection is that quite a few studies
designed to directly address this issue found that although RI
impairs memory, it does not matter whether the RI occurs early or
late in the retention interval (the degree of impairment is the same).
Wickelgren (1974, 1977), Archer and Underwood (1951), Postman
and Alper (1946), McGeoch and Nolen (1933), and Houston
(1967) are just some of the researchers who came to this conclu-
sion. Thus, on the basis of studies like these, interference theorists
concluded that consolidation, while possibly helping to explain the
effects of brain damage, apparently plays no role in the under-
standing of the time course of forgetting. That verdict has not been
seriously challenged in the field of experimental psychology, so no
modern cognitive theory of memory includes any provision for a
consolidation process. Such a challenge, which seems long over-
due, opens the door to a simple explanation for one of psycholo-
gy’s most enduring laws.

In a recent study, Wixted (2004) reviewed a century of research
on forgetting and argued that a close look at the relevant literature
tells quite a different story from the one summarized above. RI
occurring early in the retention interval is more disruptive than RI
occurring later in the retention interval, as consolidation theory
naturally predicts, but this result has been obscured largely because
the RI that matters is not the cue-overload variety (Watkins &
Watkins, 1975) that psychologists have diligently studied at least
since the 1930s (e.g., an A-B list followed by an A-C list). Instead,
what matters is the less specific RI associated with mental exertion
and the attendant memory formation, whether or not the new
memories are associated with the same retrieval cues as the ones
being interfered with.

Oddly enough, this idea corresponds closely to the way of
thinking in effect at the dawn of experimental psychology. Müller
and Pilzecker (1900) conducted the first study on the effects of RI.
In one experiment, which was described by Lechner, Squire, and
Byrne (1999) in a partial translation of Müller and Pilzecker’s
(1900) monograph (which is in German), subjects studied six pairs
of syllables and then studied an interfering list either 17 s or 6 min
later. The results showed that the retention of the first list was
impaired on a cued recall test 1.5 hr later only when the interfer-
ence occurred 17 s after learning. To explain these results, Müller
and Pilzecker (1900) presented what was at the time a novel
argument: Memories consolidate over time. If the interfering list is
learned before the consolidation of memory for the first list is
complete, RI occurs. Müller and Pilzecker were experimental
psychologists, and although their work has had virtually no influ-
ence on the field of psychology, they are widely credited in the
contemporary neuroscience literature with having first advanced
the theory of consolidation.

The kind of interference envisioned by Müller and Pilzecker
(1900) was relatively nonspecific. That is, mental activity per se
was thought to be the force that disrupted recently formed mem-
ories. I traced the subsequent history of work on this issue and

showed how the field of experimental psychology quickly moved
away from the idea that the mental activity impairs recently
formed memories and toward the idea interference is primarily a
cue-overload retrieval phenomenon (Wixted, 2004). On this view,
the mechanism of forgetting was not thought to be trace degrada-
tion due to mental activity; instead, forgetting was thought to occur
because a retrieval cue that once functioned effectively is rendered
less useful by virtue of its association with other memories.

Interference due to cue overload is, of course, a real phenome-
non, as the plethora of studies using the A-B, A-C paired-
associates paradigm has amply documented. However, Wixted
(2004, in press) reviewed a great deal of evidence suggesting that
interference due to trace degradation probably accounts for every-
day forgetting to a much greater degree than cue overload inter-
ference (which is, perhaps, mainly a laboratory phenomenon). And
it is interference due to trace degradation that is relevant to
consolidation theory and to Jost’s law of forgetting. The interfering
force is more likely to be the formation of new memories rather
than mental activity per se, but the basic idea is otherwise much
like what Müller and Pilzecker (1900) had in mind. Traces that are
more fully consolidated are less vulnerable to the interfering force
of new memory formation, and that may be why forgetting func-
tions exhibit an ever-slowing rate of decay as time elapses. Inter-
ference caused by cue overload (a retrieval phenomenon), by
contrast, does not decrease as the trace ages.

The idea that memories decay at an ever-slowing proportional
rate because they become less vulnerable to the forces of RI with
the passage of time, which had been largely abandoned by about
1935, was briefly considered again in the second half of the 20th
century by Wickelgren (1974). However, he quickly abandoned
the idea as well, mainly because of the results of an experiment
that he performed to test it. As with the interference researchers
who preceded him, Wickelgren (1974) failed to draw a clear
distinction between interference caused by trace degradation and
interference caused by cue overload. Instead, he simply took it for
granted that cue-overload procedures appropriately model the kind
of interference that causes forgetting with the passage of time. His
experiment involved a continuous associative recognition memory
procedure in which subjects were presented with a long series of
paired-associate words to learn. Occasionally during that series, a
test pair was presented and subjects were asked to indicate whether
the pair was intact (consisting of two words that had appeared
together earlier in the series) or rearranged (consisting of two
words that had appeared earlier in the series as part of different
pairs). An important point to understand about this procedure is
that the entire retention interval between study and test was filled
with the intentional learning of intervening word pairs, so the
temporal point of interpolated interference resulting from memory
formation itself was not manipulated. What was manipulated was
the temporal point of interpolated interference resulting from cue
overload. That is, if an A-B word pair had been studied earlier in
the series, an interfering A-C pair was presented either early or late
in the retention interval. Compared with a control condition, per-
formance was impaired by the presentation of an A-C pair, but the
degree of impairment was the same whether the A-C pair appeared
early or late in the retention interval. On the basis of results like
these, Wickelgren (1974) rejected his own earlier idea that RI
interferes with a young memory trace more than an older one (the
very idea I am attempting to resurrect). But the experiment that
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convinced him to make that move involved an interference proce-
dure that is not relevant to consolidation and may not be very
relevant to ordinary forgetting (Wixted, 2004).

The idea that Jost’s law reflects a consolidation process that
renders memory traces less and less vulnerable to the forces of
nonspecific RI is consistent with a great deal of work in the
contemporary neuroscience literature (Wixted, 2004). Some of that
work is conceptually identical to the work performed by Müller
and Pilzecker (1900) long ago. Izquierdo, Schröder, Netto, and
Medina (1999), for example, conducted an animal learning study
in which they first trained rats on a task called “one-trial step-down
inhibitory avoidance” and subsequently interfered with memory
for that task by exposing them to a novel environment. The
inhibitory avoidance task involved placing the rat on a platform
and then delivering a brief shock when it stepped down onto a
metal grid. Latency to step down from the platform on subsequent
test trials was the measure of memory for the training trial.
Exposure to the novel environment (the interfering task) involved
placing the rat in an open field with a pink floor adorned with
black-lined squares.

After exposure to the original learning trial, the animals were
exposed to the interfering task either 1 hr or 6 hr later, and memory
for original learning was assessed after a 24-hr retention interval.
In agreement with the results reported by Müller and Pilzecker
(1900), a temporal gradient of RI was observed: 24-hr memory of
the avoidance task was impaired only when the unrelated interfer-
ing task was presented 1 hr after learning. This presumably oc-
curred because the memories had not yet had a chance to consol-
idate when the interfering learning took place. After 6 hr, the
memories were more fully consolidated, so exposure to the novel
environment had less of an interfering effect. Very similar results
had been reported much earlier in the psychological literature in
one of the few direct tests of Jost’s law of forgetting (Britt &
Bunch, 1934).

Similar consolidation effects have been repeatedly observed for
a neural phenomenon thought to underlie the initial stages of
memory formation in the brain, namely, long-term potentiation
(LTP). LTP is an artificially induced enhancement of synaptic
transmission that can last for hours or days (and sometimes
weeks). It is induced by brief, high-frequency electrical stimula-
tion of a neural pathway, typically in the hippocampus. Xu, An-
wyl, and Rowan (1998) conducted an LTP experiment that was
conceptually much like the experiment performed by Izquierdo et
al. (1999) except that instead of using an actual learning task, these
researchers artificially induced hippocampal LTP in freely behav-
ing rats. In essence, LTP was a surrogate memory that would later
be exposed to RI after varying delays. Exposure to a novel envi-
ronment 1 hr after induction completely reversed the previously
induced LTP (i.e., interference was complete). However, if expo-
sure to the novel environment was delayed for 24 hr after induction
of LTP, no effect of that exposure on LTP (i.e., no interference)
was observed. Thus, a temporal gradient was observed yet again,
and it suggests that recently established LTP is more vulnerable to
the disruptive effects of subsequent interference than more re-
motely established LTP is (presumably because the latter has had
time to consolidate). A similar LTP study performed by Abraham
et al. (2002) involved a much more prolonged interference phase
and showed that, under such conditions, the LTP temporal gradient
can be observed over a period of many weeks (instead of hours, as

in Xu et al., 1998). Thus, at both the behavioral level and the
neural level, memories appear to become less vulnerable to the
forces of nonspecific RI as they age.

This way of thinking is also consistent with the well-known
effects of sleep on memory. The classic Jenkins and Dallenbach
(1924) study, for example, found that subjects recalled more items
after they slept through the retention interval compared with when
they remained awake. The intervening activity that is eliminated
by sleep does not necessarily involve activities that are captured by
A-B, A-C cue-overload methods. Instead, it is ordinary mental
activity and memory formation that is prevented by sleep, thereby
protecting recently formed memories from that kind of interfer-
ence. Ekstrand (1972) further showed that recall following a 24-hr
retention interval was better when 8 hr of sleep occurred shortly
after learning compared with when it occurred just prior to recall.
The enhanced performance in the immediate sleep condition pre-
sumably arose because, in that condition, memories were protected
from interference (of the mental activity and memory formation
variety) during the time period when they are the most vulnerable.

Conclusion

If it is true that memory traces become less vulnerable to the
effects of subsequent memory formation as a result of the process
of consolidation, then forgetting functions would be expected to
exhibit an ever-decreasing rate of decay and Jost’s law of forget-
ting would follow naturally. Moreover, the process that accounts
for these effects is the same one that is implied by Ribot’s law. All
may be manifestations of the same underlying process of
consolidation.

Why is this explanation for Jost’s law more compelling than the
alternatives considered earlier? The explanations based on scaling
artifacts, “survival of the fittest” memory trace, and asymptotes
greater than zero all assume that the temporal properties of a
memory trace do not change with the passage of time (i.e., for-
getting is exponential in form). Evidence that weighs against each
of these ideas is compelling: Forgetting functions based on a
measurement scale that, theoretically, is linear with respect to
underlying memory strength exhibit the same properties that al-
most all other forgetting functions do (namely, an ever-decreasing
rate of decay). The notion that this property of forgetting functions
reflects the survival of the fittest memory trace is challenged by the
observation that a great deal of variability in exponential forgetting
rates is required, even though the available evidence suggests that
very different kinds of items decay at approximately the same rate
once they are encoded. And the data purportedly showing that
forgetting functions decline to a nonzero asymptote actually pro-
vide the most compelling evidence to date that they decline to an
asymptote of zero instead.

But most damning for these accounts is independent evidence
from the neuroscience literature (and old but forgotten evidence
from the psychology literature) suggesting that memory traces
become more resistant to interference with the passage of time. A
wealth of independent evidence from research on LTP, retrograde
amnesia, and the temporal gradient of RI supports the notion that
memory traces become less fragile with the passage of time. The
idea that traces become less vulnerable to the forces of interference
with the passage of time is not easily reconciled with the idea that
memory traces have a constant rate of decay. The most parsimo-
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nious interpretation, therefore, is that Ribot’s law of retrograde
amnesia and Jost’s law of forgetting have the same theoretical
implications: Memories become less fragile to disruptive forces
with the passage of time.

If this interpretation of Jost’s law is correct, then the dominant
view of the time course of forgetting in the field of psychology for
70 years is incorrect. According to the prevailing view, forgetting
is largely a cue-overload phenomenon that operates at the time of
retrieval and is both proactive and retroactive in direction. In such
a view of forgetting (as has long been observed), the notion of
consolidation has no role to play. However, the interpretation of
Jost’s law advanced here implies that forgetting is largely a trace
degradation phenomenon and that interference is retroactive in
direction. New memories degrade (but do not necessarily over-
write) previously formed memories, more so for recently formed
memories than for ones formed longer ago. That way of thinking
was in effect at the dawn of experimental psychology, and recent
developments suggest that the psychologists who proposed it (viz.,
Müller & Pilzecker, 1900) were ahead of their time.
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