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Assessing the Belief Bias Effect With ROCs:
Reply to Dube, Rotello, and Heit (2010)
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Dube, Rotello, and Heit (2010) argued (a) that the so-called receiver operating characteristic is nonlinear
for data on belief bias in syllogistic reasoning; (b) that their data are inconsistent with Klauer, Musch, and
Naumer’s (2000) model of belief bias; (c) that their data are inconsistent with any of the existing accounts
of belief bias and only consistent with a theory provided by signal detection theory; and (d) that in fact,
belief bias is a response bias effect. In this reply, we present reanalyses of Dube et al.’s data and of old
data suggesting (a) that the receiver operating characteristic is linear for binary “valid” versus “invalid”
responses, as employed by the bulk of research in this field; (b) that Klauer et al.’s model describes the
old data significantly better than does Dube et al.’s model and that it describes Dube et al.’s data
somewhat better than does Dube et al.’s model; (c) that Dube et al.’s data are consistent with the account
of belief bias by misinterpreted necessity, whereas Dube et al.’s signal detection model does not fit their
data; and (d) that belief bias is more than a response bias effect.
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Dube, Rotello, and Heit (2010), henceforth referred to as DRH,
presented a signal detection theory (SDT) analysis and a series of
model comparisons for data from three experiments on syllogistic
reasoning, manipulating the perceived (Experiment 1) and actual
(Experiment 3) base rate of valid versus invalid syllogisms and
conclusion believability (Experiments 2 and 3). A number of
strong claims were based on these analyses, and if true, these
claims would have important implications for modeling data on
syllogistic reasoning and for accounts of belief bias. The purpose
of this reply is to examine these claims on the basis of both DRH’s
data and old data. Before we do so, it is necessary to describe
central features of DRH’s procedure.

Responses were collected via confidence ratings. More pre-
cisely, for each syllogism, participants were asked to first decide
whether it was valid or invalid and then give a rating of confidence
in their response on a 3-point rating scale. Responses were subse-
quently recoded using the numbers 1 to 6, where 1 reflects a
high-confidence “valid” judgment, 3 a low-confidence “valid”
judgment, 4 a low-confidence “invalid” judgment, and 6 a high-
confidence “invalid” judgment.

DRH based their argument on the so-called receiver operating
characteristic (ROC). An ROC is a two-dimensional plot plotting
two aspects of performance across different levels of response

bias. In the present context, it plots the proportion of correct
“valid” responses for valid syllogisms (hit rate) against the pro-
portion of false “valid” responses for invalid syllogisms (false
alarm rate). Different levels of response bias can be obtained by
varying the perceived base rate of valid relative to invalid syllo-
gisms or by varying payoff schedules (Macmillan & Creelman,
2005; McNicol, 1972; Wickens, 2002). Confidence ratings have
been used to emulate ROCs in a less expensive manner. For this
purpose, the differences between response levels from 1 to 6 are
construed as differences in response bias. For example, to obtain
the point of the ROC corresponding to the most liberal response-
bias condition, only Response 6 (high-confidence “invalid” judg-
ment) is considered an “invalid” response, whereas all other re-
sponses are treated as though the participant had responded
“valid,” including “invalid” Responses 4 and 5, and the hit rate and
false alarm rate are computed by aggregating over Responses 1–5.
For the point of the ROC corresponding to the strictest response
bias, only Response 1 (high-confidence “valid” judgment) is con-
sidered a “valid” response; all other responses, including the
“valid” Responses 2 and 3, are treated as though the participant
had responded “invalid.” Moving across the response scale in this
fashion, an ROC with 5 points is emulated. In what follows, we
will refer to the emulated ROC as a confidence-based ROC,
whereas ROCs based on a binary response format will be referred
to as binary ROCs.

DRH fitted an SDT model, implying nonlinear ROC, to data
from three experiments and judged that it provided reasonable fits
to their data. In contrast, a number of multinomial models (Batch-
elder & Riefer, 1999) with linear ROCs did not fit. They concluded
that ROCs are nonlinear for data on belief bias in syllogistic
reasoning. As DRH pointed out, nonlinear ROCs would invalidate
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traditional analyses of the data in terms of linear models such as
analyses of variance.1

DRH argued that the particular multinomial models they fitted
represent appropriate extensions of Klauer, Musch, and Naumer’s
(2000) multinomial model of belief bias. That model was developed
to account for data collected in a binary (valid vs. invalid) format and
cannot be applied to confidence-rating data without modification.
DRH concluded that their data was not consistent with Klauer et al.’s
model.

On the basis of two null findings for effects of conclusion
believability on parameters quantifying reasoning performance
(Experiments 2 and 3), DRH furthermore concluded that belief
bias in syllogistic reasoning is just a response-bias effect and that
there are no effects of conclusion believability on reasoning. They
also concluded that their data were inconsistent with accounts of
belief bias in terms of selective scrutiny, misinterpreted necessity,
mental models, metacognitive uncertainty, verbal reasoning the-
ory, modified verbal reasoning theory, and the selective processing
theory,2 whereas the only theory of belief bias consistent with their
data was claimed to be the one provided by SDT.

In what follows, we consider each of these conclusions in turn,
beginning with the issue of nonlinearity of ROCs.

The Shape of the ROC in Reasoning Data

The bulk of data collected on belief bias in syllogistic reasoning
has employed a binary (valid vs. invalid) response format (for a
review, see Klauer et al., 2000). Unfortunately, it is an open
question how confidence-based ROCs relate to binary ROCs. DRH
drew heavily on the literature on recognition memory in which the
shape of ROCs has been examined for a couple of decades and in
which nonlinear confidence-based ROCs have frequently been
observed. There is, however, a recent article by Bröder and Schütz
(2009) in that literature that has received surprisingly little atten-
tion.3 Bröder and Schütz argued as others have (Erdfelder &
Buchner, 1998; Klauer & Kellen, in press; Malmberg, 2002) that
confidence ratings may create rather than reveal nonlinear ROCs
due to variations, across and within participants, in response style.
A meta-analysis of data from 59 studies and three new experiments
conducted by Bröder and Schütz suggests that binary ROCs may
be linear in the field of recognition memory, underlining empiri-
cally the important theoretical argument that nonlinear confidence-
based ROCs do not imply nonlinear binary ROCs. We elaborate on
this point later.

Considering binary ROCs, there is evidence for nonlinear
shapes in some domains (e.g., in perception; Egan, Schulman, &
Greenberg, 1959) and evidence for a linear shape in others (e.g., in
working memory; Rouder et al., 2008). The issue is moot in
recognition memory (Bröder & Schütz, 2009).

Most studies on belief bias in syllogistic reasoning collected
binary (valid vs. invalid) responses. Taking the previously men-
tioned arguments into account, there may therefore not be a non-
linearity problem to begin with in this literature. The nonlinearity
problem postulated by DRH may instead be created by their use of
confidence ratings. It would therefore be good to have more
positive reassurance for the possibility that nonlinearity of ROCs
generalizes beyond the use of confidence ratings in the field of
syllogistic reasoning.

Fortunately, there are published data sets, some of them of
considerable size, that can be used to address the issue. We fitted
Klauer et al.’s (2000) multinomial model and the SDT model to the
10 data sets reported by Klauer et al. that employed a manipulation
of response bias via base rate and a binary response format. For the
binary response format, the multinomial model implies linear
ROCs, whereas the SDT model implies nonlinear ROCs.4

Table 1 shows the results for these 10 data sets (Study 8 in
Klauer et al., 2000, did not employ a base rate manipulation, so the
models cannot be fitted to the results of that study). The table
reports the goodness-of-fit index G2, the associated p values (small
values indicating misfit), and model-selection indices Akaike’s
information criterion (AIC) and Bayesian information criterion
(BIC) as used by DRH for comparing models (models with smaller
values are preferred).5 Because DRH did not employ syllogisms
with neutral conclusions, syllogisms with neutral conclusions as
used in Klauer et al.’s Studies 1, 3, 5, and 7 were excluded for the
fits reported in Table 1. Including them leads to the same conclu-
sions; in fact, the results become even stronger in the direction
summarized next.

As can be seen in Table 1, the multinomial model outperforms
the SDT model in 8 of 10 cases in terms of AIC and in 10 of 10
cases in terms of BIC. The differences in AIC values, but not those
in BIC values, are numerically small for each individual study, but
it is possible to enhance the information-to-noise ratio via the
aggregation principle.

One way to do this is to test whether the differences in AIC
values and BIC values are significant across the 10 data sets. The
difference in AIC values between the two models is significant in
a Wilcoxon test (Z � –2.29, p � .02), as is that in BIC values (Z �
–2.80, p � .01). Another way to do this is to consider the 10 data
sets as one big data set and to compute AIC and BIC for the joint

1 As pointed out by Klauer et al. (2000), even linear ROCs would
question such analyses unless the slope of the linear ROC is 1. Klauer et
al. proposed a model-based approach to remedy this problem.

2 DRH argued, however, that their data and model were broadly consis-
tent with broader theories of reasoning such as Chater and Oaksford’s
(1999) probability heuristics model of syllogistic reasoning.

3 DRH also did not deal with current criticisms suggesting that the
interpretation of confidence-based ROCs entertained in their article is
inadequate (Benjamin, Diaz, & Wee, 2009; Ratcliff & Starns, 2009; Rosner
& Kochanski, 2009).

4 Details on how these analyses were done including R scripts (R
Development Core Team, 2009), HMMTree equation files (Stahl &
Klauer, 2007), and data files can be found through the supplemental
materials link at the beginning of the article or at http://www
.psychologie.uni-freiburg.de/Members/klauer/r-scripts.zip/

5 In fitting the SDT model to the data from Study 7, we had to put an
upper bound on the model parameters, because maximum likelihood esti-
mation led to unrealistically large values for these parameters. The upper
bound was 3, an unrealistically large value for any of the model parame-
ters. The problem arises because in this study invalid believable syllogisms
were accepted as frequently as valid believable syllogisms, as predicted by
Klauer et al. (2000). This occasionally occurs (see, e.g., the data set
presented as an introductory example by DRH in their Table 1) but should
not happen, according to the SDT model. This pattern of belief bias causes
problems in estimating the SDT variance parameter. Excluding Study 7
from the analyses altogether does not change the results, including the
outcome of the significance tests reported next.
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data (with different parameters estimated for each individual
study). This yields a difference in AIC of 20.24 in favor of the
multinomial model and a difference in BIC of 198.91. According
to the rules of thumb stated by Burnham and Anderson (2005,
Chapter 2), a difference in AIC values larger than 10 observed in
a large data set means that the model with the larger AIC (i.e., the
SDT model) has essentially no empirical support (Burnham &
Anderson, 2005, p. 70) relative to the model with the smaller AIC
(i.e., the multinomial model).

In sum, there is surprisingly strong evidence for the multinomial
model.6 These findings thereby parallel those obtained by Bröder
and Schütz (2009) in the field of recognition memory. The con-
clusion, by DRH’s standards, is that as far as we can tell on the
basis of the available data, ROCs are linear for binary response
formats. This suggests that the use of confidence ratings creates
rather than reveals problems of nonlinearity (for reasons elabo-
rated on later). Because most studies on belief bias are based on
binary responses, the nonlinearity problem postulated by DRH
may be largely nonexistent. Another conclusion is that the multi-
nomial model describes the old data significantly better than does
the SDT model.

DRH presented one analysis involving Klauer et al.’s (2000)
original model for DRH’s Experiment 3 with data dichotomized
(see DRH’s Table 9). Unfortunately, they used 3 as degrees of
freedom for that model, but the degrees of freedom of the model
equals 4.7 This changes the values of p, AIC, and BIC for the
multinomial model. Less importantly, the likelihood terms in AIC
and BIC are computed wrongly. According to our reanalysis of the
multinomial and the SDT models, respectively, p values are .23
and .85, AIC values are 93.01 and 91.72, and BIC values are
143.14 and 154.37. Considering model fit, there is no indication in
the p values of significant model violations for either model.
Considering the model-comparison indices, the two models are
more or less tied on AIC, whereas the multinomial model performs
considerably better in terms of BIC. This suggests that Klauer et
al.’s model provides, if anything, a better description of DRH’s
data than does the SDT model.

Note that Klauer et al.’s (2000) model also shows the null effect of
believability on reasoning parameters that the SDT model analyses
exhibit. The reasoning parameters of the multinomial model—rvb, rvu,
rib, riu—measure the participants’ ability to determine the validity or
invalidity of syllogisms, separately, for valid (v) and invalid (i) syl-
logisms with believable (b) and unbelievable (u) conclusions. For the
dichotomized data of DRH’s Experiment 3, the H0 of no effect of
belief on reasoning, rvb � rvu and rib � riu, can be maintained (�G2 �
0.96, df � 2, p � .62). DRH chose not to report this, although they
presented the analogous information for the SDT model applied to the
dichotomized data (i.e., the H0: �vb � �vu and �vb � �vu can be
maintained). Instead, they reported that rvb � riu � rvu can be
maintained, whereas it is not possible to set all four r parameters equal
to each other, suggesting that rib differs from the other three once

6 One statement found in the SDT literature is that empirical ROCs with
more than 3 points are more diagnostic for discriminating between models
with differently shaped predicted ROCs than empirical ROCs based on 3
points, as in the Klauer et al. (2000) data (e.g., Bröder & Schütz, 2009). If
so, this would make it difficult to obtain a clear decision in favor of one of
the two models on the basis of the Klauer et al. data, rendering the current
outcome the more impressive.

7 Only the ratio of parameters �u and �b, but not their absolute values,
is identified in Klauer et al.’s (2000) model. To fix the scale, �b is set equal
to 1 a priori and is therefore not a free parameter. This does not imply that
the “true” value of �b, if it could be identified, is 1.

8 Consider an analogously focused test strategy for the SDT model. The
parameters governing reasoning performance in the SDT model are the means
�xy and standard deviations �xy of the distributions of valid (x � v) and invalid
(x � i) syllogisms with believable (y � b) and unbelievable (y � u) conclu-
sions with �iu � �ib � 1 and �iu � �ib � 0 imposed a priori. The four �
parameters and the four � parameters cannot simultaneously be set equal; that
is, the � and/or � parameters differ as a function of validity and/or belief
(�G2 � 345.66, p � .01, with df � 4 due to the a priori constraints). In a
second step, it is seen, however, that the four � parameters can be set equal (to
one): �G2 � 2.86, df � 2, p � .24. Once these have been set equal, effects of
belief on the two � parameters not constrained a priori are “revealed”; that is,
the H0: �vb � �vu must be rejected (�G2 � 5.28, df � 1, p � .02).

Table 1
Fit Indices and Model-Selection Indices for Data Sets by Klauer et al. (2000)

Study and
data seta

Multinomial model Signal detection model

G2b p AIC BIC G2c p AIC BIC

Study 1 3.43 .49 63.61 98.46 3.19 .20 67.36 110.92
Study 2

Naive 4.53 .34 94.19 148.75 3.75 .15 97.40 165.60
Expert 4.08 .40 95.69 153.62 3.05 .22 98.66 171.08

Study 3 1.42 .84 62.53 95.92 0.59 .75 65.70 107.44
Study 4

Naive 9.45 .05 104.12 160.32 5.47 .07 104.13 174.39
Expert 7.94 .09 104.26 162.56 2.75 .25 103.07 175.94

Study 5 3.40 .49 55.36 88.75 1.65 .44 57.60 99.34
Study 6

Naive 1.74 .78 84.95 139.31 1.38 .50 88.60 156.54
Expert 21.21 �.01 106.70 165.36 15.52 �.01 105.01 178.33

Study 7 10.15 .04 57.45 89.05 10.27 .01 61.56 101.07

Note. G2 � goodness-of-fit index; AIC � Akaike’s information criterion; BIC � Bayesian information criterion.
a Naive and expert refer to data from participants who reported no prior experience with formal logic and who did report such experience,
respectively. b df � 4. c df � 2.
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these have been set equal. DRH asserted that the multinomial model
concludes that there are effects of belief on the reasoning stage. There
is, however, little justification for this focused test strategy, and none
such is pursued for the SDT model.8

Klauer et al.’s (2000) Model for Confidence Ratings

Klauer et al.’s (2000) model was designed for binary data. Its
purpose was to provide a measurement tool to measure reasoning
accuracy for the four kinds of syllogisms typically investigated in
studies of belief bias (i.e., valid and invalid syllogisms crossed
with believable and unbelievable conclusions), correcting for re-
sponse bias and possible effects of belief on it. One issue in Klauer
et al. was that response bias should be controlled for in evaluating
reasoning performance for each kind of syllogism.

To extend the model to confidence ratings, we found it
convenient to present the model in two parts, a stimulus-state
mapping and a state-response mapping (Klauer & Kellen, in
press).

Stimulus-State Mapping

The stimulus-state mapping specifies how each kind of syl-
logism is mapped on a number of unobservable mental states. In
Klauer et al.’s (2000) most basic model, there are two detection
states: M1, in which a valid syllogism is correctly detected as
valid, and M2, in which an invalid syllogism is correctly de-
tected as invalid. There are also two states of uncertainty—M3b

and M3u—in which participants are uncertain about the syllo-
gism’s logical status and in which responses are based on an
informed guessing process that draws on extralogical informa-
tion such as conclusion believability. For M3b, the logical status
(valid vs. invalid) of a given believable syllogism is not de-
tected, and for M3u, the logical status of a given unbelievable
syllogism is not detected.

The stimulus-state mapping is depicted in Figure 1. The param-
eters r of the stimulus-state mapping provide the probabilities with
which detection states M1 and M2 rather than the uncertainty states
M3b and M3u are reached. For example, given a valid (v), believ-
able (b) syllogism, the probability of reaching state M1 is rvb and
that of reaching state M3b is 1 – rvb. The stimulus-state mapping is
independent of response format and should not be changed in

adapting the model to deal with different response formats if the
resulting model is to be consistent with Klauer et al.’s (2000)
model for binary data.

State-Response Mapping

The state-response mapping specifies how states are mapped on
responses. For binary responses, detection states M1 and M2 lead to
“valid” and “invalid” responses, respectively, deterministically. In
uncertainty states, response guessing occurs that may be biased by
conclusion believability (and other extralogical cues such as base
rate). Thus, in state M3b (M3u), the “valid” response is guessed
with probability ab (au), and the “invalid” response with probabil-
ity 1 – ab (1 – au).

In modeling confidence ratings, only the state-response mapping
needs to be adapted; the stimulus-state mapping is independent of
response format. Adapting the state-response mapping is straight-
forward. Table 2 shows a plausible state-response mapping fol-
lowing the one used by Klauer and Kellen (in press) for modeling
confidence ratings. As for the case of binary responses, and in line
with the definition of detection states, detection states M1 and M2

are mapped on “valid” and “invalid” responses in a deterministic
fashion. There are, however, three “valid” and three “invalid”
responses that can occur, and the probabilities of using these are
modeled, following Klauer and Kellen, by three parameters: sl, sm,
and sh for the ratings expressing lowest, medium, and highest
confidence, respectively. The three s parameters have to sum to 1,
so there are only two free parameters to be estimated. Because
people differ in their propensity to use extreme ratings (known as
extreme response style; Hamilton, 1968), and because there is
intraindividual variation in scale usage (e.g., Haubensak, 1992), it
is not reasonable to assume that detection states such as M1 and M2

are invariably mapped on highest confidence responses (see
Onyper, Zhang, & Howard, 2010, for a similar assumption in the
SDT framework). The scale-usage parameters sl, sm, and sh capture
interindividual and intraindividual variation in scale usage. They
are not a function of the syllogism’s validity or believability. Note
that the ROC implied by this model is nonlinear if sh is smaller
than 1. That is, interindividual and intraindividual variations in
scale usage, leading to some less than highest confidence re-
sponses in detection states, cause nonlinear ROCs according to this
model.

Figure 1. Stimulus-state mapping of Klauer et al.’s (2000) basic model.
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The guessing parameters ab(1), . . . , ab(6) and au(1), . . . , au(6)
correspond conceptually to the parameters ab and au, respectively,
for the binary response format. Because each of ab(1), . . . , ab(6)
and au(1), . . . , au(6) have to sum to 1, there are only five
parameters to be estimated per mental state M3b and M3u. The
state-response mapping thus comprises 12 parameters (i.e., 10
nonredundant guessing parameters and two nonredundant scale-
usage parameters). Taken together with the four r parameters
governing the stimulus-state mapping, the model requires 16
parameters and thus two more than the SDT model for confi-
dence ratings.9

Model Fits and Model Comparisons for DRH’s Data

Table 3 presents the results of a reanalysis of DRH’s data with
Klauer et al.’s (2000) model for confidence ratings and DRH’s
SDT model. Parameter estimates for the multinomial model are
shown in Table 4. In their own analyses, DRH presented the fit and
model-selection indices per condition for each data set (e.g., sep-
arately for the data from believable and unbelievable syllogisms;
see DRH’s Tables 4, 6, and 12). However, when models such as
the ones fitted by DRH and the present model have parameters
(e.g., the present s parameters) that are shared by the different
conditions, the condition-wise indices G2, p, AIC, and BIC do not
have the intended statistical interpretations. Table 3 therefore
presents the results per experiment.10

In terms of goodness of fit, the SDT model is inconsistent
with three of the four data sets; that is, the goodness-of-fit
statistic G2 indicates significant violations of the model as-
sumptions with p smaller than .001 for three of four data sets.
This is surprising given DRH’s strong reliance on the SDT
model (DRH did not report p values). Goodness of fit ap-
proaches more acceptable levels for the multinomial model,
although there is certainly room for improvement (G2 indicates
significant model violations with p � .01 in one case and with
p � .05 in a second case).

Note, however, that for large data sets, there is high power to
detect even tiny model violations. To take this into account,
several approaches have been considered in the literature. One

possibility is to compute compromise power analyses with effect
size w � .10 (a small effect according to Cohen, 1988) and a �/�
ratio � 1 for each data set (Bröder & Schütz, 2009), adjusting the
level of significance � according to sample size. Another possi-
bility is to use relaxed criteria for p and G2, as found in the
literature on structural equation modeling (Schermelleh-Engel,
Moosbrugger, & Müller, 2003), according to which .05 � p � 1.0
corresponds to a good fit and .01 � p � .05 to an acceptable fit,
whereas 0 � G2 � 2 dfs corresponds to a good fit and 2 dfs �
G2 � 3 dfs to an acceptable fit. Whichever of these criteria is used,
the SDT model is rejected in three of four cases, whereas the
multinomial model is rejected in one or two cases, depending upon
the criterion used.

In terms of model-selection indices AIC and BIC, the multino-
mial model outperforms the SDT model in three of four cases for
AIC and in two of four cases for BIC, although one of these latter
cases is more or less a tie. Taken together with the goodness-of-fit
results, the multinomial model would probably be preferred on the
basis of the results.

Given the poor goodness of fit of the SDT model, it would
probably be prudent not to interpret its parameter estimates further
(see Footnote 10). Nevertheless, DRH reported that manipulations
of base rate (Experiments 1 and 3) as well as manipulations of
conclusion believability (Experiments 2 and 3) map on the re-
sponse criteria, whereas there are mostly no significant effects on
the parameters governing reasoning performance. The same pat-
tern of results is obtained for the multinomial model: Manipula-
tions of base rate (Experiments 1 and 3) as well as manipulations
of conclusion believability (Experiments 2 and 3) map on the
guessing parameters capturing response bias (smallest �G2 �
21.48, largest p � .01), whereas there are no effects on the r
parameters governing reasoning performance (largest �G2 � 4.39,
smallest p � .13).

Taken together, DRH’s data are inconsistent with the SDT
model and somewhat better described by Klauer et al.’s (2000)
model for confidence ratings. This implies that what is wrong with

9 In Experiment 1, DRH manipulated perceived base rate in two
steps. Base rate here takes the role of conclusion believability in the
multinomial model, as it does in the SDT model. In Experiment 3, they
manipulated perceived base rate in three steps. In analyzing the data as
a function of base rate, base rate again takes the role of conclusion
believability, but there are now three levels for this factor. Here, the
multinomial model has 23 parameters and the SDT model 21 parame-
ters. The parameters for the multinomial models are six r parameters (2
[valid vs. invalid] � 3 [3 base rates]), 15 nonredundant guessing
parameters (five per base rate condition), and two nonredundant s
parameters for scale usage.

10 Presenting the results per experiment also supports DRH’s intention to
compare parameters across conditions. For example, DRH wished to
determine whether response criterion parameters differ significantly be-
tween syllogisms with believable and unbelievable conclusions. The log-
likelihood ratio test for this comparison contrasts (a) a baseline model
modeling the conditions with believable and unbelievable conclusions
jointly with separate response criterion parameters for each condition and
(b) a constrained model in which these parameters are set equal across
conditions. The validity of this test hinges on the assumption that the
baseline model is valid, that is, that its goodness-of-fit statistic G2 does not
already indicate significant model violations. Table 3 presents the appro-
priate G2 values and associated p values.

Table 2
State-Response Mapping for Klauer et al.’s (2000) Model
Extended to Confidence Ratings

Mental
state

“Valid” response “Invalid” response

1 2 3 4 5 6

M1 sh sm sl 0 0 0
M2 0 0 0 sl sm sh

M3b ab(1) ab(2) ab(3) ab(4) ab(5) ab(6)
M3u au(1) au(2) au(3) au(4) au(5) au(6)

Note. M1 � detection state in which a valid syllogism is correctly
detected as valid; M2 � detection state in which an invalid syllogism is
correctly detected as invalid; M3b � state of uncertainty in which the
logical status of a given believable syllogism is not detected; M3u � state
of uncertainty in which the logical status of a given unbelievable syllogism
is not detected; sh � highest confidence parameter; sm � medium confi-
dence parameter; sl � lowest confidence parameter; ab(1) to ab(6) �
guessing parameters for believable syllogisms; au(1) to au(6) � guessing
parameters for unbelievable syllogisms.
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the particular multinomial models fitted by DRH is not what they
have in common with Klauer et al.’s original model; the culprit is
the set of auxiliary assumptions that DRH used to extend that
model to confidence ratings.11 What we consider to be reasonable
auxiliary assumptions (as already employed by Klauer & Kellen,
in press) lead to reasonable results.

The present section addressed the question of whether Klauer et
al.’s (2000) model is consistent with DRH’s data and how it
characterizes the nature of base rate and believability manipula-
tions in that data. This is a different question from the one
considered in the previous section, that is, whether ROCs in
reasoning data are nonlinear. DRH suggested, however, that there
is a strong link between the two questions. For example, DRH
stated in the abstract of their article: “In all cases, the form of the
empirical ROCs was curved and therefore inconsistent with the
assumptions of Klauer, Musch, and Naumer’s (2000) multinomial
model of belief bias.” DRH discussed one multinomial model,
MPT-R, that they believe is capable of generating nonlinear
confidence-based ROCs, but in fact it generates strictly linear
ROCs.12

Additional Model Analyses and the Account by
Misinterpreted Necessity

These model analyses also provide deeper insights for the DRH
data. Reasoning parameters r for participants’ performance in
detecting the syllogisms’ logical status are invariably very small
for invalid syllogisms, whether they are believable or not (see
Table 4). In fact, the hypothesis rib � riu � 0 can be maintained
for each of DRH’s data sets (largest �G2 � 2.23, smallest p �
.33). Again, base rate takes the role of conclusion believability in
the analyses reported in this section for the data sets in which base
rate rather than believability was manipulated (see Footnote 9).

DRH’s invalid syllogisms are indeterminately invalid; that is,
the conclusion is possible, but not necessary, given the premises.
rib � riu � 0 means that participants were unable to detect the
invalidity of the invalid syllogisms and that instead they relied
exclusively on extralogical information (such as base rate and
believability) in responding to these syllogisms. This is what one
would expect under the account of belief bias in terms of misin-
terpreted necessity (Evans, 1989).

As argued by Evans and Pollard (1990); Newstead, Pollard,
Evans, and Allen (1992); and Klauer et al. (2000), a viable version
of the account by misinterpreted necessity should permit response

bias for valid syllogisms. Participants are not always able to
determine the validity of valid syllogisms, but they are not allowed
to withhold the response when they are not. It is likely that the
response is then influenced by extralogical information in guessing
under uncertainty even for valid syllogisms. Expressed in terms of
Klauer et al.’s model, the account by misinterpreted necessity then
reduces to the claims (a) that rib � riu � 0 and rvb � rvu, which can
be upheld for each of DRH’s data sets (largest �G2 � 5.81,
smallest p � .16) and (b) that rv � rvb � rvu is larger than zero and,
in fact, the hypothesis that rv � 0 can be rejected for each of
DRH’s data sets (smallest �G2 � 109.14, largest p � .01).

To summarize, rib � riu � 0 means that responses to the invalid
syllogisms are exclusively driven by response bias as predicted by
misinterpreted necessity. In turn, rv � rvb � rvu 	 0 implies that
response bias governs responses for valid syllogisms to a propor-
tionally smaller extent, given by 1 – rv � 1, as predicted by
misinterpreted necessity, whereas no effect of belief on reasoning
must be assumed (i.e., rvb � rvu and rib � riu) in line with the
account by misinterpreted necessity. These hypotheses capture the
essence of the version of the account in terms of misinterpreted
necessity considered by Evans and Pollard (1990) and Newstead et
al. (1992) and formalized by Klauer et al. (2000). If response bias
favors syllogisms with believable conclusions, an interaction of

11 Thus, DRH’s model MPT1 predicts (for all practical purposes) zero
frequencies of highest confidence “valid” and “invalid” responses for
invalid and valid syllogisms, respectively. Because a substantial number of
responses were observed in these cells, any model predicting zero frequen-
cies for these cells produces pronounced misfit, whether it is consistent
with Klauer et al.’s (2000) model or not and whether it predicts linear or
nonlinear ROCs. Models MPT2 and MPT3 are not consistent with Klauer
et al.’s model, because a proportion ε of the responses governed by the r
parameters is in fact mapped on (highest confidence) wrong responses. For
example, a proportion rvu(1 – ε) of responses is mapped on highest
confidence “valid” responses consistent with Klauer et al.’s model, but a
proportion rvuε of responses flow into highest confidence “invalid” re-
sponses inconsistent with Klauer et al.’s model. Model MPT-R does not
make this assumption, but it assumes that detection states are invariably
mapped on highest confidence correct responses, which as explained in the
body of the text is implausible.

12 For MPT-R, it follows from the equations given in DRH’s Appendix
A (dropping the subscript y) that hit rate H and false alarm rate FA are
related by Hc � rv 
 (1 – rv)/(1 – ri)FAc for each point of the confidence-
based ROC (c � 1, . . . , 5) of a given believability or base rate condition.

Table 3
Fit Indices and Model-Selection Indices for Dube, Rotello, and Heit’s (2010) Data Sets

Study and
data set

Multinomial model SDT model

G2 df p AIC BIC G2 df p AIC BIC

Experiment 1 12.70 4 .013 44.70 136.35 7.25 6 .298 35.25 115.45
Experiment 2 14.04 4 .007 46.04 127.70 22.94 6 �.001 50.94 122.39
Experiment 3a

Believability 6.66 4 .155 38.66 138.91 46.82 6 �.001 74.82 162.54
Base rate 13.12 7 .069 59.12 203.23 30.95 9 �.001 72.95 204.53

Note. AIC and BIC values are shown minus an additive constant (i.e., by adding the appropriate penalty to G2). G2 � goodness-of-fit index; AIC �
Akaike’s information criterion; BIC � Bayesian information criterion.
a Believability and base rate refer to analyses aggregating across base rate and believability, respectively.
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validity and belief is thereby predicted for the raw (unmodeled)
acceptance frequencies.

DRH claimed that their data are inconsistent with any of the
existing accounts of belief bias and that the only theory of belief
bias consistent with their data is the one provided by SDT. In fact,
their data are consistent with the version of misinterpreted neces-
sity considered by Evans and Pollard (1990) and Newstead et al.
(1992) as formalized by Klauer et al. (2000). Although the strength
of this conclusion is somewhat weakened by the less-than-optimal
goodness of fit of Klauer et al.’s model, the goodness of fit of the
SDT model to DRH’s data is clearly unsatisfactory.

Are Multinomial Models More Flexible Than
SDT Models?

DRH anticipated that multinomial models (other than Klauer et
al.’s, 2000, model) may provide adequate fits of their data, but as
they stated, their purpose was not to document the flexibility of the
multinomial model framework. This raises the legitimate question
whether the present relative success of Klauer et al.’s (2000) model
reflects nothing more than the possibly greater flexibility of this
model relative to SDT models in accounting for data in general.
The only formal evidence comparing SDT models and multino-
mial models in terms of flexibility that we are aware of is a
simulation study by Bröder and Schütz (2009). That study sug-
gested that the SDT model with unequal variance is more flexible
than a multinomial two-high-threshold model similar to Klauer et
al.’s basic model.

From a broader point of view, a cursory review of the SDT
literature reveals that the toolbox for SDT models to date includes
moving from one to two dimensions (e.g., Hautus, Macmillan, &
Rotello, 2008), adding an additional distribution for “unattended”
targets (e.g., Hautus et al., 2008), adding a discrete detection state
(e.g., Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996),
adding guessing noise (e.g., Hautus et al., 2008), adding decision
noise (e.g., Mueller & Weidemann, 2008), using other than normal
distributions for noise and signal trials (e.g., DeCarlo, 1998), and
so forth. This endows the SDT approach with a high level of

structural flexibility and makes it likely that a modified SDT
model might be found that provides adequate fits of DRH’s data.

Is Belief Bias a Response Bias Effect?

On the basis of two null findings for effects of conclusion
believability on reasoning parameters (Experiments 2 and 3), DRH
concluded that belief bias does not affect reasoning performance
and that instead, as the title of their article puts it, “it’s a response
bias effect.” Null findings in the sense of an absence of an
interaction of validity and believability are not unusual in the
literature on belief bias, and the conditions under which the inter-
action is observed is an issue of theoretical debate (e.g., Newstead
et al., 1992).

Belief bias often takes the form of lowered accuracy for conflict
syllogisms in which logic and believability suggest opposite re-
sponses (i.e., for invalid believable and for valid unbelievable
syllogisms). In the SDT model, this pattern of belief bias is
mapped on response bias and does not show up in the parameters
quantifying reasoning performance (i.e., in �i, �v, �i, and �v)
unless the drop in accuracy is substantially asymmetric for the two
kinds of conflict syllogisms. Alternatively, belief bias of this kind
could be mapped as a belief effect on reasoning parameters �i and
�v (Wickens & Hirshman, 2000), as acknowledged by DRH. This
is because only the differences �v – ck and �i – ck between
distribution means and response criteria ck, but not their absolute
values, are identified in the SDT model. Shifting the response
criteria of, say, unbelievable syllogisms cku relative to those of
believable syllogisms by an additive constant (an effect of belief
on response bias) therefore has the same effect as shifting the
distribution means of valid and invalid unbelievable syllogisms
�vu and �iu in the opposite direction relative to those of believable
syllogisms (an effect of belief on the reasoning stage). But the
parameterization chosen by DRH rules out the second mapping
(�iu is set equal to �ib a priori) and enforces the first. Thus,
whatever the data, it cannot be ruled out that belief bias, where it
exists, is more than response bias, using the SDT model.

Table 4
Multinomial Model Parameter Estimates for Dube, Rotello, and Heit’s (2010) Data Sets

Study and condition

r a s

Valid Invalid 1 2 3 4 5 6 sh sl sm

Experiment 1 .72 .25 .03
Liberal .41 .00 .31 .27 .08 .03 .16 .15
Conservative .27 .11 .11 .22 .03 .11 .28 .25

Experiment 2 .69 .26 .05
Believable conclusion .64 .00 .29 .27 .05 .06 .16 .17
Unbelievable conclusion .53 .00 .13 .15 .04 .06 .31 .31

Experiment 3: Beliefa .70 .21 .10
Believable conclusion .60 .01 .31 .19 .09 .11 .15 .16
Unbelievable conclusion .52 .04 .18 .12 .05 .11 .22 .31

Experiment 3: Base rateb .72 .20 .09
Liberal .54 .00 .32 .19 .11 .06 .16 .17
Neutral .51 .11 .33 .14 .08 .12 .11 .22
Conservative .46 .02 .13 .16 .04 .13 .28 .26

a Refers to the analysis aggregating across the base rate. b Refers to the analysis aggregating across believability.
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Using the SDT model, it can, however, be shown that belief bias
is more than response bias. We reanalyzed Klauer et al.’s (2000)
data sets using the SDT model, performing tests for an effect of
conclusion believability on reasoning performance for each data
set in the same manner as DRH did for their data. Although Klauer
et al.’s model describes Klauer et al.’s data sets better than the
SDT model does, the overall goodness of fit of the SDT model was
sufficient in this case to warrant further analyses of its parameters
(see Table 1). Due to the just-mentioned limitation of the SDT
model, only certain patterns of belief bias can be detected by the
SDT analysis, so that one cannot expect to find an effect of belief
bias in each and every data set. Nevertheless, as shown in Table 5,
there were significant effects of conclusion believability on the
SDT reasoning parameters in four of 10 cases. Meta-analytically,
over the 10 data sets, the �G2 values sum to 86.08, which is
significant (df � 20, p � .01). In conclusion, the available data
suggest, by DRH’s standards, that belief bias is more than a
response bias effect, even according to the less appropriate metric
provided by the SDT model.

Implications for Theories of Belief Bias

DRH and Klauer et al. (2000) agree that traditional analyses of
reasoning data in terms of raw acceptance rates are overly naive
and susceptible to scale artifacts that can be mitigated through the
use of appropriate models. What can be concluded from the
present debate over and above this methodological point?

DRH’s data are consistent with the account of belief bias in
terms of misinterpreted necessity within the limits set by the
less-than-optimal goodness of fit of Klauer et al.’s (2000) model to
DRH’s data. DRH’s data thereby add to the considerable support
that exists for this account in the literature (e.g., Klauer et al.,
2000; Newstead et al., 1992). However, when more focused tests
of it are implemented (e.g., through the use of simpler, one-model,
indeterminately invalid syllogisms; Klauer et al., 2000; Newstead
et al., 1992), its predictions are often not confirmed.

There is little support for DRH’s claim that belief bias is just
response bias, which if true would have been an important addition
to, and correction of, the literature. Empirically, the claim rests
on two null findings and on a model that does not fit the data,
whereas that same model applied to old data produces considerable
counterevidence against it. Theoretically, the claim rests on a
model that for mathematical reasons cannot rule out the possibility
that belief bias, where it exists, has an effect on reasoning, what-
ever the data. Nevertheless, the idea that belief bias is primarily a
response-bias phenomenon is an old one (e.g., Evans, Barston, &
Pollard, 1983) and deserves further study, because it would offer
an attractively simple account of belief bias.

From a broader perspective, it could be argued that SDT models
are more in tune with probabilistic theories of reasoning (e.g.,
Oaksford & Chater, 2007). The probabilistic approach roughly
claims that responses are based on the subjective probability of the
conclusion in the presence of the premises or on considerations of
measures of statistical information. Both the SDT model and
probabilistic theories thereby invoke a latent strength-of-evidence
scale on which responses are based, as noted by DRH.

In contrast, multinomial models incorporate discrete all-or-none
detection states that are more in tune with theories invoking a kind
of mental logic, be it in terms of rules or mental models. Such
theories assume that reasoners are at least in some instances
capable of arriving at a firm valid versus invalid decision that they
then translate into responses (not necessarily using highest confi-
dence response categories where rating responses are required).
However, whether or not detection states are reached can by itself
be modeled as deriving from a latent strength-of-evidence dimen-
sion with a criterion placed on it (e.g., Klauer, 2010), suggesting
that these analogies do not carry much weight. For such reasons,
we prefer to view the simple models used here as measurement
tools.

Limitations of the SDT Model as a Measurement Tool

One, perhaps modest, way to think of SDT models and multi-
nomial models is as measurement tools (rather than theories)
quantifying task performance in terms of dependent variables that
provide better controls for confounded processes than do analyses
of raw data. Thus, Klauer et al. (2000) viewed their model as a
measurement tool providing a means to assess reasoning perfor-
mance with response bias controlled for, and they spelt out the
predictions of different accounts of belief bias for the pattern of
model parameters consistent with each account. Similarly, the
SDT model provides parameters for reasoning performance with
response bias controlled for. Measurement models are not free of
assumptions—assumptions that need to be tested and supported by
the data if the measurement is to be more valid than are analyses
of raw data. Batchelder and Riefer (1999) elaborated on the rela-
tionship between measurement models and underlying psycholog-
ical theory and on how to validate measurement models.

One limitation of the SDT model as a measurement tool is that
it does not allow one to assess reasoning performance separately
for valid and invalid syllogisms. It only provides a measure of the
effect of validity, that is, a score for the difference between
acceptability levels of valid and invalid syllogisms (on probit-
transformed data). In contrast, the multinomial model allows one
to assess reasoning performance separately for each of the four

Table 5
Tests for Effects of Believability on Reasoning Accuracy in the
Signal Detection Model

Study and data seta G2b p

Study 1 1.26 .53
Study 2

Naive 1.83 .40
Expert 0.47 .79

Study 3 0.77 .68
Study 4

Naive 26.62 �.01
Expert 8.15 .02

Study 5 6.51 .04
Study 6

Naive 1.75 .42
Expert 35.19 �.01

Study 7 3.53 .17

Note. G2 � goodness-of-fit index.
a Naive and expert refer to data from participants who reported no prior
experience with formal logic and who did report such experience, respec-
tively. b df � 2.
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kinds of syllogisms typically administered in studies on belief bias,
and the model analyses were thereby able to show that the DRH
data are consistent with the account of belief bias by misinter-
preted necessity.

Another limitation of the SDT model as a measurement tool was
already explained: It does not allow one to detect belief bias taking
the form of lowered reasoning accuracy for conflict syllogisms.
Yet, according to Klauer et al.’s (2000) theory, belief bias should
often take this form.

A final limitation is that the SDT approach is not as well
developed as the multinomial-modeling approach in dealing with
individual differences between participants and artifacts caused
thereby when data are aggregated across participants. Individual
differences in reasoning ability, in response bias, and in response
style are ubiquitous (e.g., Stanovich & West, 2000). The present
analyses as well as DRH’s analyses are based on aggregated data.
Yet, fitting nonlinear models to aggregated data leads to all of the
statistical errors that DRH set out to correct and to additional
fallacies (e.g., Klauer, 2006; Rouder & Lu, 2005). Individual data
are usually too sparse to allow one to fit the kind of model
considered here to each individual’s data, but there is a compro-
mise between the extremes of individual-level analyses and anal-
yses of the aggregated data, namely the hierarchical-modeling
approach (Raudenbush & Bryk, 2002). Easy-to-use software exists
for multinomial models implementing a hierarchical-model exten-
sion to safeguard against these fallacies (Stahl & Klauer, 2007),
but similar tools are still lacking for signal detection analyses,
although they are certainly within reach (Rouder & Lu, 2005).

Summary

In summary, reanalyses of the available published data and of
DRH’s data suggest (a) that the ROC is linear for binary response
formats as employed by the bulk of research on belief bias in
syllogistic reasoning; (b) that the use of confidence ratings creates
rather than reveals nonlinear ROCs; (c) that Klauer et al.’s (2000)
model describes the available data with binary response format
significantly better than does DRH’s model, and that it describes
DRH’s data somewhat better than does DRH’s model; (d) that
DRH’s data are consistent with the account by misinterpreted
necessity within the limits set by the less-than-optimal goodness of
fit of Klauer et al.’s model to DRH’s data, whereas DRH’s SDT
model does not fit DRH’s data; and (e) that belief bias is more than
a response bias effect.

Model comparisons as presented by DRH are useful even if it
turns out, as in the present case, that existing models do a better
job. For example, negative results may inspire researchers to probe
into the matter more deeply, by identifying and corroborating a
flaw or limitation in existing data, by collecting new and diagnos-
tic data, or by developing yet another model that may do an even
better job. In pursuing one of these avenues, it may be wise to rely
on the binary response format, which, being more constrained,
may be less vulnerable to unwanted variance in terms of variations
in scale usage than are confidence ratings.
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