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SIGNAL DETECTION THEORY:

CONSIDERATIONS FOR GENERAL APPLICATION

R. E. PASTORE1 AND C. J. SCHEIRER

State University of New York at- Binghamton

While there exist a number of papers describing the theory of signal detection,
it appears that many psychologists are not aware of the ease with which
signal detection theory can be applied, the range of applications possible, or
the limitations of signal detection theory. This paper briefly summarizes the
assumptions of signal detection theory and describes the procedures, the limi-
tations, and practical considerations relevant to its application. A worked
example of an application of signal detection theory to the study of cognitive
processes is included.

In recent years, researchers in many di-
verse areas of psychology have begun to
employ the theory of signal detection to sepa-
rate the ability of the subject to differentiate
between classes of events from motivational
effects or response biases. In addition to its
extensive application in sensory psychophys-
ics, signal detection theory has found applica-
tion in such diverse areas as speech percep-
tion (Egan & Clarke, 1956), memory (Banks,
1970; Bernbach, 1967; Parks, 1966), animal
learning (Rilling & McDiarmid, 1965; Su-
boski, 1967), audiology (Campbell & Moulin,
1968), attention (Moray, 1970; Sorkin, Pas-
tore, & Pohlmann, 1972), clinical psychology
(Sutton, 1972), and sensory-evoked poten-
tials (Hillyard, Squires, Bauer, & Lindsay,
1971). The purpose of this article is to re-
view and briefly summarize the more common
models 2 of signal detection theory, describe
the procedures required to apply each model,
and discuss the limitations inherent in each.
While there are a number of excellent theo-
retical papers describing signal detection
theory and its various models (e.g., Egan &
Clarke, 1966; Green & Swets, 1966; Lick-

1 The authors wish to thank Crawford Clark, Don
Ronken, John Swets, Douglas Creelman, William
Lutz, and Charlotte MacLatchy for their helpful
criticisms of earlier drafts of this paper.
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2 The term model is used in this article to connote
a special case of the theory based on certain clearly
defined assumptions and, therefore, is limited in
scope.

lider, 1959; Peterson, Birdsall, & Fox, 1954;
Swets, Tanner, & Birdsall, 1961; Van Meter
& Middleton, 1954), there is a clear need
for a concise, unified explanation of how and
when to use the various models of signal
detection theory. This article attempts to ful-
fill that need. The first section of this article
presents a brief summary of the models of sig-
nal detection theory on a general level. The
second section presents practical considera-
tions for the application of signal detection
theory and the specific procedures used in
these applications. The third section outlines
the potential use of signal detection theory in
several experimental situations and presents a
worked example of an application to the
study of cognitive processes.

OVERVIEW

The purpose of this section is to provide a
brief overview and summary of the theoreti-
cal underpinnings of signal detection theory.
For a more complete introduction and theo-
retical presentation, the reader should refer to
the articles by Egan and Clarke (1966), by
Swets et al. (1961), or others. Signal detec-
tion theory is an adaptation of statistical
decision theory (e.g., Wald, 1950). A major
aspect of both signal detection theory and sta-
tistical decision theory concerns the specifi-
cation of a set of ideal processes or observers
as a standard against which a subject's per-
formance is compared. While this comparison
is an important aspect of signal detection
theory, the specification of an ideal observer
depends on the exact area or modality under
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study and the assumed capabilities of the
observer. Therefore, this aspect of signal
detection theory is not considered in this
article; for a general discussion of the use of
ideal observers, see Tanner (1961) or Tan-
ner and Sorkin (1972).

General Case

Signal detection theory is applicable to
those situations in which two classes of events
are to be discriminated. It also can be gen-
eralized to situations involving more than two
classes of events (Tanner, 1956; but also see
Luce, 1963), although this generalization is
not discussed in this article. The basic as-
sumption of signal detection theory is that
each decision made by the subject is based on
a statistic that is derived from the many (i.e.,
M) characteristics of the event in question.
This statistic reflects the relative probability
that the observed characteristics of the event
arose from one of a specific class of events.
The optimum statistic for such a decision is
the likelihood ratio or some monotonic trans-
form of the likelihood ratio (Green & Swets,
1966). The likelihood ratio, X(«), is the rela-
tive likelihood that the event, u,. arose from
one as opposed to the other class of events.
That is, /»(«), the likelihood that the given
M-dimensional observation u arose from class
i, is the product of the probability that each
of the M observed characteristics arose from
a class i event, and

X(«) =/!(«)//,(«). [1]

The theory assumes that the subject computes
\(u), or some monotonic transform of
A(w)[e.g., \'(u) = log A.(w)], for each event
and makes a response decision based on that
computed value. It is further assumed that
the subject adopts a fixed criterion value of
A(«), called /3 and that the decision corre-
sponding to any event, u, is simply a state-
ment of whether \(u) is greater than /?. The
capability of the subject to discriminate be-
tween the two classes of events is inversely
proportional to the total area common to the
two conditional probability density functions
[/{(«); i = 1, 2]. This common area is as-

sumed to be invariant during the measure-
ment interval.3

Assumption of Normality

One specific set of signal detection theory
models, the Gaussian models, assumes that the
two conditional probability density functions
[/»(«)] are Gaussian (normal). One theo-
retical basis for this assumption is that there
are a large number (i.e., M) of independent
characteristics of the event sampled on each
observation, and that the system performs a
logarithmic transform of the computed likeli-
hood ratio (Egan & Clarke, 1966). It should
be noted that logarithmic transforms are
common in perceptual and behavioral data
(e.g., Fechner's and Stevens' laws). Because
of this hypothetical logarithmic transforma-
tion, the separate likelihood statistics are the
sums of a large number of independent fac-
tors. Then, according to the central limit the-
orem, the distribution of the likelihood sta-
tistics approximates a normal distribution.

On a practical level, the important question
is whether there exists evidence that in the
given experimental situation, the assumption
of normality is tenable. Such evidence might
be in the form of reliable results published in
the literature or in a test of the assumption
by the experimenter (see following sections
entitled "Assumptions of Normality and
Equal Variance" and "Rating Procedure").
If the Gaussian assumption cannot be justi-
fied, then alternative statistics should be em-

3 The computation of a likelihood ratio statistic
assumes that the observer knows the probability
distribution for each sampled characteristic condi-
tional on each of the two classes of events. Obvi-
ously, the discriminaWlity of the events from the
two classes of events reflects the subject's knowl-
edge of the actual differences between the two
classes. The assumption of a decision statistic based
on the likelihood ratio is simply an assumption that
the subject's knowledge of the classes of events can
be used in terms of the conditional probability den-
sity functions for each characteristic, ,and that this
probability information is combined in an efficient,
systematic manner. The theory further states that
any factor (i.e., learning) that changes the subject's
knowledge of these differences will alter the likeli-
hood statistics, and therefore the discriminability
of the two classes of events.
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ployed. Such statistics might include simple
response probabilities, estimates of "thresh-
olds," statistics derived from a different para-
metric model of signal detection, or non-
parametric indexes of signal detection theory.
Some of these alternatives, including non-
parametric indexes of signal detection theory,
are also discussed in the section entitled
"Nonparametric Model."

Since the Gaussian distribution is com-
pletely defined by its first two moments, the
mean and variance, the area common to two
Gaussian density functions, and thus the dis-
criminability of the two classes of events
giving rise to these functions, is a monotonic
function of the distance between the distri-
bution means scaled in terms of the pooled
or average variance (a z transformation). The
most common version of the Gaussian model
is based on the further assumption that the
variances of the probability density functions
conditional on the two classes of events are
equal. If this and the other assumptions are
valid, then the differential weighting of the
two distributions caused by any response
bias does not affect the estimate of the pooled
variance, and the scaled distance between the
two means is called d'. This value is equal to
the difference of the signed distances, in z-
score units, from each mean to the subject's
criterion. These distances may be estimated
by converting into z-score units the proba-
bility (relative frequency) of the subject cor-
rectly identifying events from the separate
classes. The value of d' also may be esti-
mated from appropriate tables of d' (e.g.,
Elliott's tables in Swets, 1964) by arbitrarily
calling one of the two classes of events (i.e.,
Class 1) the "signal," and the other class,
"noise."

If one is interested in motivational or cri-
terion factors, the criterion (/?) employed by
the subject should be examined. In the equal-
variance Gaussian model this criterion is inde-
pendent of d' and is defined by the following
equation:

. . . . [2]

The values of f(b\i) may be estimated from
the values of P (response i event i) with a
table of ordinates of the normal curve. It
should be noted that P (Response 2 1 Event
2) and /8 are monotonically related.

Receiver Operating Characteristics (ROC)

A receiver operating characteristic is the
locus of points representing the performance
of a subject across all criteria under a fixed
experimental condition. The ordinate of the
receiver-operating-characteristic function is
P( response * event i) and the abscissa is
/•(response z|event ;'), i ̂  ;, for each criterion.
Since these probabilities are determined by
the form of the underlying density functions,
the shape of the receiver-operating-character-
istic curve also is determined by the nature
of these underlying distributions.*

The receiver-bperating-characteristic curve
is generated by sampling the performance of
a subject under a given experimental condi-
tion while the subject uses various criteria.
The subject's criterion can be manipulated
through the use of instructions or by the use
of a differential payoff schedule; in standard
binary decision tasks (yes-no and two-
alternative forced choice) the criterion is ma-
nipulated across, but not within (see section
entitled "Criterion Stability") blocks of trials.
A receiver operating characteristic can also be
generated within blocks of trials by the use
of the rating scale procedure discussed in a
subsequent section entitled "Rating Proce-
dure." Since it is assumed that the distribu-
tions on which the subject bases decisions are
invariant under fixed experimental conditions
independent of the criterion employed, the
receiver-operating-characteristic curve is the

where }(b\i) is the height of the probability
density function for class i at the criterion or
boundary, b, between the two response classes.

4 Any factor that affects the density functions on
which the subject bases his or her decision will
affect the shape of the receiver-operating-character-
istic curve. Some factors known to be important in
these respects include the., experimental paradigm
employed by the experimenter (Markowitz & Swets,
1967), the strategy" (i.e., decision rule) employed by
the, subject (Luce, 1963), the modality (auditory,
visual, memory, etc.) in which the subject is operat-
ing (Green & Swets, 1966), the subject's criterion
stability (Healy & Jones, 1973), and the intertrial
intervals employed (Green & Swets, 1966).
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map of data points for all possible criteria
at a fixed level of sensitivity. Thus, the
receiver-operating-characteristic curve is also
called the Isosensitivity curve. In memory
tasks, it is referred to as the memory oper-
ating characteristic (MOC).

APPLICATION CONSIDERATIONS

Assumptions of Normality and Equal
Variance

If there is sufficient evidence in the litera-
ture to warrant the assumption of equal-
variance Gaussian density functions, d' and /?
may be employed to describe, respectively, the
subject's ability to discriminate the two
classes of events and the subject's response
bias, subject to the considerations described
below. If there is insufficient evidence to
support the assumptions of the model (that
the density functions are Gaussian and of
equal variance), these assumptions should be
tested directly in applying the model. The
most typical method for testing these assump-
tions is the use of a rating procedure (cf.
Egan, Schulman, & Greenberg, 1959). This
procedure should be used also if the density
functions are suspected of being Gaussian,
but of unequal variance, and might be
employed by careful researchers even when
both assumptions are supported by previous
research.

Rating Procedure

With the rating procedure, the subject is
asked to use N different responses that reflect
the subject's confidence that a Class 1 event
has occurred. Typically, five to eight confi-
dence ratings or responses are employed. It
is assumed that the subject operates in a
manner similar to that employed in binary
decision tasks (yes-no or two-alternative
forced choice) and adopts N — 1 criteria
separating each adjacent pair of the N re-
sponses rather than the single criterion em-
ployed in the binary task. The results gen-
erated by the use of these N — 1 criteria are
plotted as N — 1 points (%, ys), where ; = 1,
2, . . . , N — 1, and where x} and ys are

defined as

i
Xj = ̂  P (response i\ Event 2)

and

ys = Y. P (response i] Event 1). [3]

Thus Xj and y} are the values of the distribu-
tion functions for Events 1 and 2 at criterion
;'. Obviously, if the assumptions of equal-
variance Gaussian functions hold, the ex-
pected values of d' calculated for each point
(Xj, yf) are equal and therefore not cor-
related with the criterion employed by the
subject.

The functional relationship between y^ (the
probability of a "hit") and xt (the probabil-
ity of a "false alarm") describes the contour
of criteria for a fixed set of density functions
under a specific experimental condition. This
function of equal sensitivity is the receiver-
operating-characteristic curve described ear-
lier. If the probabilities *» and yt are trans-
formed to the equivalent z scores [x'j = z of
(Xj — .5) and y'} = z of (y} — .5)], the nor-
malized receiver-operating-characteristic curve
can be used to test the validity of the assump-
tions of normality and equal variance. If the
underlying density functions are Gaussian,
the normalized receiver-operating-character-
istic curve will describe a linear function:

= ax' + c. [4]

The slope of this function, a, is equal to the
ratio of the standard deviations of the two
density functions (a = o-2/<ri), and the inter-
cept, c, is related to the distance between the
distribution means,

If the receiver-operating-characteristic curve
exhibits a systematic deviation from linearity,
the Gaussian assumption may be invalid. If
this deviation from linearity is large, but not
systematic, there exists an actual deviation
from normality and/or a large error factor
that may be correlated with the criterion of
the subject. Any criterion-correlated error
factor will distort the form of the normalized
receiver-operating-characteristic curve. How-
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ever, an equally important concern is that
any large error factor might mask an actual
deviation from linearity. Such error factors
may be due to a number of different prob-
lems, including a high degree of criterion
variability and/or an insufficient number of
trials employed in the experiment (see sec-
tion entitled "Number of Trials"). If the
error factor is large, or is suspected of being
large, the interpretation of the results should
reflect this fact.

The linear function best describing the
data, expressed as standard normal deviates,
should be estimated by standard curve-fitting
operations.6 If the data are adequately de-
scribed by a linear function, the Gaussian
assumption is supported. It should be noted,
however, that this use of cumulative rating
data to generate the receiver-operating-char-
acteristic curve provides data points that are
not independent and, at a minimum, imposes
a monotonic relationship between successive
data points.

If the Gaussian assumption is not rejected,
the equal-variance assumption is tested with
the slope, a, of the normalized receiver-
operating-characteristic curve (Equation 4).
If the slope is approximately equal to 1.0, the
equal-variance assumption is not rejected and
the equal-variance Gaussian model may be
legitimately employed with d' and ft as pa-
rameters. While the values of d' estimated
from the N — 1 criteria are not totally inde-
pendent estimates, the mean or median value
of d' may be employed as the estimate of ob-
server sensitivity. The measures derived for

5 Many researchers (e.g., Swets et al., 1961) have
used simple visual fits to determine the "best-fit-
ting" straight line. This crude method is probably
sufficient for most proposed uses of the function.
Conventional least squares curve-fitting procedures
are theoretically inappropriate because both variables
are dependent variables and subject to error. For
rough approximations, this problem is of minor
importance since the error introduced is likely to be
small relative to the noise in the data. However, for
researchers interested in precise estimates of the
parameters of receiver-operating-characteristic curves
and in a test for goodness-of-fit of the theoretical
model, maximum-likelihood estimators giving exact
fits have been developed by Ogilvie and Creelman
(1968).

the unequal-variance Gaussian model, dis-
cussed in the next section, and the nonpara-
metric model, discussed in the section entitled
"Nonparametric Model," may be more desir-
able than those derived from the equal-vari-
ance model since fewer restrictive assumptions
are involved.

General Gaussian Case

If the equal-variance assumption is vio-
lated, d' and /? will be correlated to a degree
that is related to the deviation from equality
of variance. The general Gaussian (or un-
equal-variance Gaussian) model is applicable
when the Gaussian assumption is justified, in-
dependent of the relative magnitude of the
variances. Application of the general Gaussian
model requires knowledge of the slope, a, of
the normalized receiver-operating-character-
istic curve (Equation 4) which may be esti-
mated with the rating procedure (see section
entitled "Rating Procedure"). The basic goal
of the general Gaussian model is to develop
a statistic that describes sensitivity, is inde-
pendent of the subject's criterion, and reflects
the average spread or variance of the two
distributions. Several statistics use the fact
that when ft = 1.0, ft is equidistant from the
two distribution means in terms of standard
normal deviates (z scores) for each of the
given distributions. At J3 = 1.0, the "hit rate"
for the two classes of events [P(response i\
event i)] are equal. Thus d' computed at
y8 = 1.0, the minimum total error criterion
(given equal probability of presentation for
the two classes of events), will be based on
the average standard deviation with equal
weighting given to the two distributions. This
minimum error criterion is the negative diago-
nal (y' = — x') of the receiver-operating-
characteristic space (see Figure 1). The co-
ordinates (x'm, y'm) of the intersection of
the estimated receiver-operating-characteristic
curve (Equation 4) and the negative diagonal
define the value of d' for this minimum error
criterion. The value of d' for this point is
equal to the distance along the negative diag-
onal from the positive diagonal (chance line)
scaled in terms of the difference between the
coordinates (y'm — x'm), and is called d's
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(Clarke, Birdsall, & Tanner, 1959). This value
of d' (d's) is the distance between the dis-
tribution means scaled in terms of the aver-
age of the standard deviations for the two
distributions.

With knowledge of the slope, a, of the nor-
malized receiver-operating-characteristic func-
tion, one can compute d's from a single data
point (x'k, y'k) by the formula

'd'. = 2(y'k -ax' * a). [5]

Other measures of sensitivity that may be
derived for the general Gaussian model in-
clude d'e, which equals the square of d's
(Egan, 1958; Egan & Clarke, 1966) and Am,
the x intercept of the normalized receiver-
operating-characteristic curve (Green & Swets,
1966).

Whenever d' or d's is computed from repli-
cated sets of binary decisions, the various
estimates of sensitivity for a given subject
should be examined for any relationship be-
tween the sensitivity measure and the prob-
ability of a false alarm, P( Response l| Event
2). Any such relationship indicates a devia-
tion from the assumed slope of the receiver-
operating-characteristic curve. This simple
check should be followed whenever repeated
estimates of sensitivity are obtained for each
subject, whether or not the variances are
assumed to be equal.

Nonparametric Model

The Gaussian models of signal detection
theory are members of a class of models in
which the parameters describing the ability
of the subject to perform the given task and
the subject's decision rule are dependent on
the assumption of certain specific underlying
density functions. Other parametric models of
signal detection theory based on different as-
sumed density functions (e.g., negative expo-
nential, rectangular, Raleigh, and Rice) can
be derived (Green & Swets, 1966; Pollack &
Hsieh, 1969), but such models have not been
fully developed for general use and, in any
case, would be of questionable utility since
the user must be able to justify the assump-
tion of the given underlying density func-

tions. Since it is unlikely that, in a particular
situation, data that are sufficiently deviant to
lead to rejection of the Gaussian model would
be sufficiently regular to support an alterna-
tive model, a nonparametric model of signal
detection theory whose measures are indepen-
dent of the exact nature of the underlying
density function would be of general utility.

Green (1964) proposed the use of the
area under the receiver-operating-characteristic
curve, Ag, as a measure of observer sensitiv-
ity. Assuming only that the subject bases his
decision on two continuous probability den-
sity functions that are identical under the
various experimental procedures, this measure
can be shown to be identical to the expected
percentage correct in a two-alternative forced
choice experiment (Green & Moses, 1966).
Since this relationship is independent of the
form of the underlying probability density
functions, it may be employed with no prior
assumptions concerning the shape of these
density functions. This area measure of sensi-
tivity may be employed for both rating data
(Pollack, Norman, & Galanter, 1964) and
single data points (Pollack & Norman, 1964).

The derivation of the area measure and
the corresponding nonparametric measure of
criterion is based on the unit square (see
Grier, 1971). This square has as its abscissa
and ordinate, xt and yi, as denned in Equa-
tion 3. When only a single point relating xt

and yi is available, the area under the curve
joining the points (0,0) to (x,y) to (1,1) is
determined. This area, Ag, is then taken to be
the index of observer sensitivity; Ag is the
average of the maximum and minimum
possible areas under the receiver-operating-
characteristic curve and is given by the fol-
lowing formula:

^,=.5+(y-*)(l+y-*)/4y(l-*). ,[6]

The Ag measure has also been extended to
cases where more complete receiving-oper-
ating-characteristic curves are available (Pol-
lack, Norman, & Galanter, 1964) for exam-
ple, when data have been obtained through
the rating procedure (see previous section en-
titled "Rating Procedure"). In this case the
area under the curve Ag, can be estimated by
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the formula:

A. = (1/2) Z (*y+i - *y) (yi+1 + yy), [7]

where Xj and y^ are defined by Equation 3.
Pollack and Hsieh (1969) have used Monte

Carlo methods to sample from various den-
sity functions in order to investigate the
sampling distributions of Ag and d'e (dis-
cussed in a previous section entitled "General
Gaussian Case"). They determined that when
the normality assumptions of signal detection
theory are satisfied, d'e and a Gaussian trans-
form of Ag, N(Ag),w& related by the formula

N(Ag) = [.707 - .2341og2 [8]

They found that the empirically determined
values of N(Ag) tended to overestimate the
values of d'e by l%-6%.

Hodos (1970) developed a nonparametric
measure of criterion or bias. This measure
was based on the fact that the negative diag-
onal of the unit square represents the locus
of points where the subject would be equally
likely to respond "i" or "j" given ambiguous
stimulus conditions. The measure reflects the
degree to which a data point deviates from
the negative diagonal relative to the maxi-
mum possible deviation. A computational
formula for the nonparametric measure of
criterion, ft', based on the Hodos measure,
has been developed by Grier (1971). The
formula is:

(? = 1 - *,-(! - *,)/?,-(! - *), [9]

where Xi and yt are defined in Equation 3.

Criterion Stability

If the criterion adopted by the subject is
not stable during any given session, the vari-
ability of the criterion will affect the results.
The presence of criterion variability cannot
be detected easily, and will have the same
effect on the results as an increase in the
variance of both likelihood density functions.
Criterion variability therefore decreases the
estimate of d' by an amount that is related
to the size of the criterion variance without

actually affecting the true discriminability of
the two classes of events. Obviously, any
experimental manipulation that affects cri-
terion variability will alter the estimate of d'.
Safeguards against criterion variability in-
clude the use of trained subjects, strict
instructions to the subjects about maintaining
a stable criterion, and strict definitions of the
subject's response classes. Since the subject's
criterion is partially determined by the expec-
tation of the probability of presentation of
the two classes of events, the subject should
be made aware of the absence of sequential
dependencies across trials.

While it may be reasonable to assume that
the criterion employed by a single subject
during any measurement session (block of
trials) is stable, it is less reasonable to assume
that the subject will employ the same cri-
terion across sessions, or even across separate
blocks of trials within a session. Therefore,
only the data for a single block of trials
should be used to estimate a value of d'. The
estimates of d' from the various blocks of
trials may then be averaged.

Malingering

The positive diagonal of the receiver-oper-
ating-characteristic space (x' = y') defines
chance performance. Under the equal-variance
Gaussian model, the receiver-operating-char-
acteristic curve that corresponds to the posi-
tive diagonal is generated under the condition
of exact equality for the two density functions.
Data points below this chance line can be
generated only by (a) measurement error or
(b) the subject performing the discrimination
and then emitting a response that is incon-
sistent with the computed decision statistic
[A'(y)l- If a subject consistently produces
data that fall below the chance line, there is
justification to assume that the subject can
perform the discrimination, but is malingering.

Number of Trials

In applying signal detection theory, the ex-
perimenter is assuming that there are two
fixed internal probability density functions,
and the subject has established a fixed cri-
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terion along the dimension (decision axis) on
which these functions lie. The purpose of the
experiment is to estimate the area [P (re-
sponse "i"\event j)] in the tail of each of the
two distributions from the relative fre-
quencies of the responses. The expected
standard error in estimating the probablity
[P("i"\j)] as a function of both tie sample
size and the expected value of this probability
is p • q/s, where p is the expected value of the
probability, q = 1 —p, and s is the sample
size. The expected error of estimation for d'
can be obtained by applying a z transforma-
tion to p — (p • q/s). Green and Moses
(1966) found that the actual error involved
in estimating this parameter is slightly larger
than predicted by this assumption of binomial
variability. Pollack and Hsieh (1969), in a
computer simulation, found that the error
variance in Ag was slightly smaller than pre-
dicted by the assumption of binomial vari-
ability. Therefore, the expected binomial vari-
ability would seem to reflect the magnitude
of error to be expected in a given measure.
Obviously, the use of only a small number of
trials for one or both of the event classes re-
sults in a large expected error in estimates of
the parameters of the model. Furthermore,
reliable estimates of sensitivity require a large
number of trials when based upon extreme
values of P("i"\j).

APPLICATIONS OF SIGNAL DETECTION THEORY

Since signal detection theory provides the
researcher with a means of evaluating inde-
pendently both the ability of an organism to
discriminate between classes of events and
motivational or other response effects, it can
be a powerful research tool having applica-
tion in a variety of different experimental
settings. It is the purpose of this section to
outline some potential applications of signal
detection theory in areas of psychology where
this method has not been widely used. The
applications discussed include the evaluation
of (a) the state of the organism or environ-
ment, (b) the relationship between stimuli
and potential or actual responses, and (c) the
independence of "channels" for processing
stimulus information. Finally, a more tradi-

tional example from memory work is pre-
sented in some detail to provide a worked
example for persons unfamiliar with the com-
putational procedures involved in a signal
detection theory analysis.

Evaluating the Condition of Subjects or
Environment

The ability of a subject to perform detec-
tion, discrimination, or recognition tasks can
be altered by a number of conditions includ-
ing the psychological or physiological condi-
tion of the subject (e.g., behavioral or organic
dysfunction), the existence of a drug state, or
the imposition of an external stimulus. In
many cases, however, it is unclear whether
the performance difference is due to changes
in the ability of the subject to perform the
task or changes in the response tendencies of
the subject. Signal detection theory may be
used in a between-groups design to evaluate
the cause of the observed differences between
an altered and a control population. Simi-
larly, signal detection theory could be used
in a pretest-posttest design to investigate the
locus of performance differences as a result
of pharmacological or surgical interventions.
A somewhat less obvious potential applica-
tion occurs in the area of motivation. If an
experimenter discovers that rats initially ex-
hibit a preference for a given solution over
water, but after two months of continuous
ad libium intake of the solution exhibit no
differential preference, the experimenter does
not know whether the motivation of the tats
or their ability to discriminate between the
two solutions ;has been altered. However, by
using the given solution and water as the
discriminative stimuli with either an appeti-
tive or avoidance conditioning technique, the
researcher could apply nonparametric mea-
sures of signal detection theory to the per-
formance data to evaluate the nature of this
change.

Evaluating Response Factors

Performance in any given task is deter-
mined by two main classes of variables:
those -that affect the discriminability of
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stimulus events or conditions and those that
affect the motivational state and response
tendencies of the given subject. These two
classes of variables are completely analogous
to the sensitivity and criterion factors con-
sidered by signal detection theory. Therefore,
differences between response or motivational
effects may be evaluated by signal detection
theory analysis techniques. For example, the
responses of infrahuman subjects may be
evaluated in terms of the "hit" and "false
alarm" rates with nonparametric measures of
signal detection theory applied to separate
the two classes of effects. In addition, if one
is willing to assume that the magnitude of the
response (e.g., galvanic skin response or
reaction time) is directly (or inversely) pro-
portional to the likelihood ratio, one can gen-
erate a receiver-operating-characteristic curve
and employ parametric measures of signal
detection theory (cf. Pike, 1973).

An assumption with greater face validity
and some empirical support (Emmerich,
Gray, Watson, & Tanis, 1972) is that the
magnitude of a response parameter reflects the
absolute value of the difference between
the given likelihood ratio and the subject's
response criterion. Partitioning the data on
the basis of a subject's binary (yes-no, etc.)
response, the strength or speed of a "yes"
(or "signal") response may be assumed to be
monotonically related to the likelihood ratio,
with "no" responses reflecting likelihood
ratios that are below those for "yes" re-
sponses and are an inverse monotonic func-
tion of the strength or speed of response.
Once a receiver-operating-characteristic curve
is generated, the assumptions for the para-
metric measures (df, d's, etc.) can be tested,
and the appropriate measure employed. For
an example of this type of analysis applied
to response latency, see Murdock (1966).

The use of modern data-acquisition and
analysis procedures have opened the area of
the neural coding of stimuli to study. Many
analysis techniques (e.g., average evoked
potential, poststimulus time, and interpulse
interval histograms) pool the data across
trials to extract statistically the average re-
sponse from the data. While these techniques

have statistical validity, the "average" re-
sponse they extract may be typical of none
of the actual responses. Signal detection
theory offers another statistical means of
extracting a "characteristic response." As-
sume that in a study of multicellular activity
in a given nucleus, it is found that vibratory
stimuli presented simultaneously with a light
flash cause a characteristic "averaged" re-
sponse that differs in certain aspects from
the response to only a light flash. An analy-
sis of the individual trial data using an
arbitrarily defined response can estimate a
complete outcome matrix (hit, false alarm,
etc.) for the given response from which a
signal detection theory measure of the ade-
quacy of that "response" in distinguishing
"stimulus-plus-noise" events from "noise-
only" events. Systematic modification of
the definition of a "response" can then be
used to determine the response pattern that
best discriminates the stimulus from the
noise. Thus, the averaging may have indi-
cated the importance of a burst of respond-
ing 10 milliseconds after the stimulus, while
the iterative signal detection theory tech-
nique may indicate the requirement of two
distinct bursts that must begin between 7 and
9 milliseconds, and must be separated by a
2-millisecond lull in firing.

Evaluating Channel Independence

Recently there has been considerable inter-
est in the ability of subjects to process inde-
pendently the information presented to differ-
ent sensory or perceptual "channels." One
factor contaminating much of the early work
in this area is the change in the criterion of
the subject with changes in the requirements
of the task. Eijkman and Vendrik (1965)
studied the independence of processing of
auditory and visual signals. Signal detection
theory measures of the detectability of the
auditory and visual stimuli were estimated
for a set of subjects in separate experiments.
Then the same subjects were asked to per-
form simultaneously the same independent
auditory and visual detection tasks with sepa-
rate sets of responses for each type of stimu-
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lus; signal detection theory measures of sensi-
tivity were computed for each of these two
stimulus channels. A comparison of the signal
detection theory measure under the simple
and simultaneous condition provides an indi-
cation of the degree of interaction between
the two tasks, which may be evaluated in
quantitative terms by methods developed by
Taylor, Lindsay, and Forbes (1967). Because
there is independence across stimuli and
across most stimulus-response categories in
the response matrix, it is possible to calculate
a signal detection theory measure of sensitiv-
ity in one channel conditional on the simul-
taneous stimulus, response, or outcome event
in the other channel. With modern data-
handling techniques, partitioning of the data
in this manner has become a simple matter.
Pastore and Sorkin (1972) examined the ef-
fects on sensitivity in a single sensory chan-
nel as a function of the various possible
stimulus events and outcomes in the second
channel in a simultaneous two-channel detec-
tion paradigm. This technique of analysis has
also been successfully employed by Harvey
and Treisman (1973) in a simultaneous task
and by Sorkin, Pohlmann, and Gilliom (1973)
in a successive two-channel task.

Evaluating Memory Processes

Lutz and Scheirer (1974) investigated
differences in the processes involved in the
encoding of visually presented verbal and
pictorial stimuli. Each subject was presented
with a series of 190 stimulus items; each
item was presented for either .25, .50, 1.00,
or 2.00 seconds with a fixed interstimulus
interval of either .25, 1.00, or 2.00 seconds.
All conditions in the 4 X 3 X 2 (Presentation
Interval X Interstimulus Interval X Stimulus
Type)' factorial arrangement were presented
to independent groups of 12 subjects.

At the beginning of the session the sub-
jects were told that a series of items would
appear on the screen in front of them. The
subjects were instructed to "pay careful at-
tention to each item . . ." since the subjects
would "later. . . be given a test based on
these items." Following the presentation of
the 190 stimulus items, the subjects were told

that a second series of items would be pre-
sented, each for a few seconds. They were
told that some of the items had been pre-
sented previously and some had not, and were
given the following instructions:

When an item appears, look at it and decide
whether the item appeared in the first series. You
should record your decision on the answer sheet.
There are six categories you can respond with:

+H-+ if you are definite that you have seen the
item before;

++ if you believe that you have seen the item
before;

+ if you guess that you have seen the item
before;

— if you guess that you have not seen the
item before;
if you believe that you have not seen the
item before;
if you are definite that you have not seen
the item before.

For each stimulus you should respond with one and
only one of the above categories. For each item that
appears, circle the appropriate symbol on the answer,
sheet as soon as you have made your decision. Try
to use all six categories but only where appropri-
ate ... In summary, when the first item appears
look at it, decide whether the item appeared in the
first series . . . Then wait for the next item to
appear [p. 317].

AH instructions were read aloud to the sub-
jects, with the category definitions typed on
a card given to the subject for reference
during the experiment. A series of 120 test
stimuli were presented to the subject, 60 ;of
these test stimuli were randomly chosen from
the original 190 items. These "old" items
were randomly mixed with 60 "new" items
that were not in the original set....

The relative frequency of responding with
each of the six categories to each of the two
classes of events is shown in Table 1 for two
of the subjects. These rating response data
were converted to cumulative response prob-
abilities as described by Equation 3 and then
plotted as receiver-operating-characteristic
curves. Figure 1 is the normalized receiver-
operating-characteristic curve for the two sub-
jects reported in Table 1. The upper and right
margins of the figure are delineated in
z-score units. The lower and left margins are
delineated in terms of probabilities. The
data points are labeled according to the limits



SIGNAL DETECTION THEORY 955

TABLE 1

RELATIVE AND CUMULATIVE FREQUENCIES WITH EACH CATEGORY TOR THE SUBJECTS
DESCRIBED IN TEXT° AND IN FIGURE 1

Subject

1

Total

2

Total

response i

+ + +
+ +

+

—

+ + +
+ +

+
—

P(j'lnew)

.033

.000

.067

.067

.200

.633
1.000

.033

.250

.167

.183

.234

.133
1.000

P(»|old)

.533

.050

.117

.133

.100

.067
1.000

.517

.200

.050

.100

.117

.016
1.000

SP(t|new)

.033

.033

.100

.167

.367
1.000

.033

.283

.450

.633

.867
1.000

SP(»Iold)

.533

.583

.700

.833

.933
1.000

.517

.717

.767

.867

.984
1.000

»See section entitled "Rating Procedure.'

of summation indicated in Equation 3 and
Table 1. The linear function describing
each set of data is plotted in Figure 1.
The data for the second subject appear
to be curvilinear. Had the data for a
majority of the other subjects been curvi-
linear, the Gaussian assumption would have
to be rejected. However, a small and approxi-
mately equal number of receiver-operating-
characteristic curves were curvilinear in each
direction, and most functions were linear
(e.g., see the curve for Subject 1 in Figure 1).
Therefore, the Gaussian assumption was held
to be supported by the data and the few
deviations from linearity were assumed to be
due to error.

The linear functions for the two subjects
plotted in Figure 1 have estimated slopes of
.91 and .85, respectively. While these slopes
do not differ substantially from the slope of
unity required by the assumption of equal-
variance Gaussian distributions, larger devia-
tions were found for a number of subjects.
Since acceptance of the equal-variance as-
sumption is therefore tenuous and since the
rating procedure allows the use of the general
Gaussian model (see sections "Rating Proce-
dure" and "General Gaussian Case"), d'g was
used as the measure of discriminability rather

than d'. The negative diagonal (minimum
error criterion) of the receiver-operating-
characteristic space in Figure 1 is delineated
in units of d's. The intersection of this diag-
onal with the linear regression lines for the
obtained data yield d's estimates of 1.94 and
1.14 for the two subjects. The corresponding
values of the nonparametric area measure of
sensitivity, Ae, computed with the use of
Equation 7, are .892 and .785. These are
estimates of the ability of the subjects to dis-
criminate the two classes of events indepen-
dent of the criteria employed and any dif-
ferences in variability within the classes of
events.

Using any positive (+, ++, + + + )
response as a response indicating an "old"
stimulus and any negative response (—, — — ,

) as a response indicating a "new"
stimulus, the probability of a correct response
was computed for each subject. A within-cell
product-moment correlation of .91 was ob-
tained between d's and the probability of being
correct. This high correlation appears to be at
least partially due to the use of a strict set
of criterion categories. While this procedure
was intended to minimize within-subject vari-
ability, it also appears to have caused most
subjects to adopt a set of criteria whose
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FIGURE 1. Normalized receiver-operating-characteristic for two subjects,
which is the probability of a "hit" [y = P(response i| stimulus »)1 plotted as
a function of the probability of a "false alarm" lx = P(response z|stimulus
;), Z96;'] in terms of z scores. (The right and upper edges of the figure are
delineated in terms of z scores lx', y ' ] , while the left and lower edges are
delineated in terms of the equivalent probabilities lx, y\. The procedures used
to generate the receiver-operating-characteristic curve are described in the
last part of this article. Units of d's are delineated along the negative diagonal
and are explained in the section entitled "General Gaussian Case.")

centroid was consistent. This improved the
validity of the probability-of-correct response
measure by limiting the criterion variability
between subjects.

FINAL CONSIDERATIONS

While this article is intended to provide the
reader with an overview of the general theory
and requisite procedures to use signal detec-
tion theory, it is recommended that this
article also be used as a guide to reading the
more detailed statements of signal detection
theory, most of which deal only superficially
with many of the application considerations
described in the second section. This article
has treated only the simple, more common
models of signal detection theory. Models of

signal detection theory have been generalized
to multicomponent recognition tasks (Pastore
& Sorkin, 1971; Tanner, 1956), and to a
broad spectrum of research applications in
modern psychology (i.e., Swets, 1973). In
addition, statistical tests for various signal
detection theory parameters have been devel-
oped (i.e., Gourevitch & Galanter, 1967;
Ogilvie & Creelman, 1968). Critiques of signal
detection theory may be found in Luce
(1963), and Abrahamson and Levitt (1969).
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